Publication List
Thesis
Conference
- Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AITheodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel, David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan, Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A Osborne, Tim G J Rudner, David Ruegammer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, Ruqi Zhang
- Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU NetworksAgustinus Kristiadi, Matthias Hein, Philipp Hennig
Journal
Workshop
- A Critical Look At Tokenwise Reward-Guided Text GenerationAhmad Rashid, Ruotian Wu, Julia Grosse, Agustinus Kristiadi*, Pascal Poupart*
- If Optimizing for General Parameters in Chemistry Is Useful, Why Is It Hardly Done?Stefan Schmid, Ella Rajaonson, Cher-Tian Ser, Mohammad Haddadnia, Shi Xuan Leong, Alan Aspuru-Guzik, Agustinus Kristiadi, Kjell Jorner, Felix Strieth-Kalthoff
- Dimension Deficit: Is 3D a Step Too Far for Optimizing Molecules?Andres Guzman Cordero, Luca Thiede, Gary Tom, Alan Aspuru-Guzik, Felix Strieth-Kalthoff, Agustinus Kristiadi
- Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep LearningRuna Eschenhagen, Erik Daxberger, Philipp Hennig, Agustinus Kristiadi
Preprint
- On the Disconnect Between Theory and Practice of Overparametrized Neural NetworksJonathan Wenger, Felix Dangel, Agustinus Kristiadi