
Predictive Uncertainty Quantification
with Compound Density Networks

Agustinus Kristiadi

Matriculation number: 3047084

February 2019

Master Thesis

Computer Science

Supervisors:

Jun.-Prof. Dr. Asja Fischer
Prof. Dr. Jens Lehmann

Institut für Informatik

Rheinische Friedrich-Wilhelms-Universität Bonn

Abstract

Despite the huge success of deep neural networks (NNs), finding good mechanisms
for quantifying their prediction uncertainty is still an open problem. Bayesian neural
networks are one of the most popular approaches to uncertainty quantification. On
the other hand, it was recently shown that ensembles of NNs, which belong to
the class of mixture models, can be used to quantify prediction uncertainty. In
this thesis, we build upon these two approaches. First, we increase the mixture
model’s flexibility by replacing the fixed mixing weights by an adaptive, input-
dependent distribution, parametrized by NNs, and by considering uncountably many
mixture components. The resulting class of models can be seen as the continuous
counterpart to mixture density networks and is therefore referred to as compound
density networks (CDNs). We employ both maximum likelihood and variational
Bayesian inference to train CDNs, and empirically show that they can (i) quantify
both aleatoric and epistemic uncertainties, (ii) yield better uncertainty estimates on
out-of-distribution data, and (iii) are more robust to adversarial examples than the
previous recent approaches.

i

Acknowledgement

The author would like to thank, first and foremost, Jun.-Prof. Dr. Asja Fischer for
the supervision. Comments, criticisms, and suggestions, which are integral to the
improvement of the original idea of this thesis, came from the fruitful discussions
between the author and Jun.-Prof. Dr. Asja Fischer. Moreover, without her as the
co-author, the paper version of this thesis would not be realized.

The author would also like to thank Prof. Dr. Jens Lehmann and Smart Data
Analytics (SDA) lab in Bonn for hosting the author while this thesis was being
written. Furthermore, the author is grateful for the generous support in computing
power endowed by SDA, which was crucial for running the experiments presented
in this thesis.

Not to forget, the author would like to thank all the anonymous reviewers of the
paper version of this thesis. The critical and objective feedbacks given by them are
important to further improve the quality of this thesis.

Lastly, the author would like to thank the family of the University of Bonn, the
Bonn University and State Library, and all the maintainers of the civilization in
Bonn, who altogether provided a suitable environment where the author could work
on this thesis with peace of mind.

ii

Table of contents

Abstract i

Acknowledgement ii

Table of contents iii

List of Figures v

List of Symbols vii

1 Introduction 1

2 Background 5
2.1 Neural networks as probabilistic models 5

2.1.1 Multi-layer perceptrons . 6
2.1.2 Convolutional neural networks 7
2.1.3 Recurrent neural networks . 7

2.2 Method of uncertainty quantification 8
2.2.1 Bayesian statistics . 8
2.2.2 Frequentist statistics . 12

2.3 Mixture models . 13
2.3.1 Conditional mixture models 14
2.3.2 Mixture of experts . 14
2.3.3 Mixture density networks . 15

3 Compound Density Networks 16
3.1 Compound density networks . 16

3.1.1 Maximum-likelihood CDNs 17
3.1.2 Bayesian CDNs . 18

3.2 Probabilistic hypernetworks . 20
3.2.1 Probabilistic hypernetworks with matrix-variate normal dis-

tributions . 22
3.2.2 Vector scaling parametrization 27

3.3 Related work . 28

iii

TABLE OF CONTENTS iv

4 Experiments 30
4.1 Experiment setup . 30
4.2 Toy regression . 32
4.3 Out-of-distribution data . 34
4.4 Adversarial attack . 35
4.5 Comparison to training based on VIB objective 39

5 Conclusion and Future Research 41

Bibliography 43

Appendices 51

A Other CDN models 52
A.1 Adaptive Gaussian dropout . 52
A.2 Probabilistic ResNets . 54

B Supplementary Experimental Results 55
B.1 Experimental results for additional baseline models 55
B.2 Visualization of the learned mixing distribution 56

List of Figures

1.1 Adversarial example. 2
1.2 Types of uncertainty. 3

2.1 Laplace approximation . 10
2.2 Variational Bayesian inference . 11
2.3 Mixture models . 13

3.1 Probabilistic hypernetworks . 20
3.2 Graphical model of probabilistic hypernetworks 21

4.1 Homoscedastic toy regression experiments. 32
4.2 Heteroscedastic toy regression experiments. 33
4.3 Effect of number of training samples of z on ML-CDNs. 34
4.4 Effect of number of training samples of z on VB-CDNs. 35
4.5 MNIST out-of-distribution experiments. 36
4.6 Fashion-MNIST out-of-distribution experiments. 36
4.7 MNIST adversarial attack experiments. 37
4.8 MNIST adversarial attack with more training samples. 37
4.9 MNIST adversarial attack with stronger adversarial examples. 38
4.10 Fashion-MNIST adversarial attack experiments. 38
4.11 CIFAR-10 adversarial attack experiments. 39
4.12 Comparison between maximum-likelihood CDN and VIB objective. . 40

A.1 Probabilistic ResNets. 54

B.1 Additional OOD experiments. 55
B.2 MNIST adversarial attack experiments. 56
B.3 Visualization of CDN weights on toy regression dataset. 56
B.4 Visualization of CDN weights on toy classification dataset. 57

v

List of Algorithms

3.1 The training procedure of CDNs with LML. 17
3.2 The training procedure of CDNs with LVB. 18

vi

List of Symbols

0 Zero vector

bl The l-th bias vector of a neural network

H Hessian matrix

I Identity matrix

Im Identity matrix of size m×m

Wl The l-th weight matrix of a neural network

D Dataset

λ, η Scalar hyperparameter

µ, µ Mean of a Gaussian

σ2, Σ Variance/covariance a Gaussian

h(t) The hidden state at time t of a recurrent network

hl The l-th hidden units of a neural network

ω Variational parameter

θ, φ, ψ Parameter of a model

θ∗ The optimal value of θ

x Input variable

y Output variable

z, z Latent variable

Probability distributions

MN Matrix-variate Gaussian distribution

vii

LIST OF SYMBOLS viii

N Gaussian distribution

p Abstract probability distribution

q Variational posterior

Bern Bernoulli distribution

Functions

L Objective function

σ Sigmoid function

f , g Neural network

fCNN Convolutional neural network

fMLP Multi-layer perceptron

fRNN Recurrent neural network

h Component-wise nonlinear function, acting on a vector/matrix

Operators

∗ Convolution

dim Dimension

E Expectation

DKL KL-divergence

|.| Determinant

‖.‖F Frobenius norm

∇θ Gradient w.r.t. θ

⊗ Kronecker product

diag Mapping a vector to a diagonal matrices, where the diagonal entries are
given by the vector

tr Matrix trace

vec Vectorization operator, i.e. stacking the columns of a matrix

Chapter 1

Introduction

Deep neural networks (NNs) have achieved state-of-the-art performance in many
application areas, such as computer vision [Krizhevsky et al., 2012] and natural
language processing [Collobert et al., 2011]. However, despite achieving impressive
prediction accuracy on these supervised machine learning tasks, NNs do not pro-
vide good ways of quantifying predictive uncertainty. This is undesirable for many
mission-critical applications, where taking wrong predictions with high confidence
could have fatal consequences. Consider an NN that is used as an object detector
and is applied in an autonomous vehicle, where it is trained to recognize various
objects present in a given moment during the vehicle’s self-driving. Imagine that
the NN misclassify an object with class “human” as “road”: the vehicle will then
perceive that the road is empty thus it will continue cruising or speed up. With-
out any doubt, this behavior will be fatal, thus the need of the NN to quantify its
prediction uncertainty and reports back to the human behind the steering wheel or
fall-backs to the safest possible action, whenever it is unsure.

With the increasing real-world applications of machine learning systems, such
as in autonomous vehicles, medical diagnostics, robot control in factories, or power
grid systems, concerns about the safeness of these systems for human and the envi-
ronment have been raised by the community. Applications mentioned above could
potentially be life-threatening for humans or damaging the environment. Thus, in-
creasingly there has been a lot of attention in the direction of making sure that
machine learning systems to be safe, under the umbrella of a field called AI safety
[Amodei et al., 2016].

One of the concrete problems in AI safety is how to handle distributional change
or out-of-distribution (OOD) data [Amodei et al., 2016]. Consider a cleaning robot
trained to clean a factory floor. The robot might learn that using a very strong
industrial-grade cleaning solution to be the best way to clean the floor. However,
if the robot is then deployed in an office or residential house, the behavior that it
learned might be very dangerous for the people reside in the office or the house.
This example illustrates the need for handling out-of-distribution data. At the very
least, the robot should know when it is unsure whether it should still use a strong
cleaning solution in a new environment, so that a human supervisor can take over,

1

1 Introduction 2

Figure 1.1: An illustration of an adversarial example. The clean image (left image),
which has a label of “panda”, is perturbed by an imperceptible noise (middle image),
resulting in a new image (right image) which has virtually no difference to the clean
image. However, when this resulting image, called the adversarial example, is feed
into an NN, the NN would predict it as “gibbon” with 99% confidence. Taken from
Goodfellow et al. [2015].

for instance.
Another concrete problem that has gained research traction recently is adver-

sarial examples [Szegedy et al., 2014]. Szegedy et al. [2014] found that adding small
corrupting noise to the input of an NN could make the NN misclassifies the input
with high confidence, even if the NN has been validated to be very accurate on clean
input (Figure 4.7). Adversarial examples are major problems in machine learning
systems, as hackers can easily construct fake inputs that make mission-critical sys-
tem at best unusable and at worst life-threatening for humans. At the very least it is
desirable to have an NN system that can report high uncertainty under adversarial
examples, so that, as in OOD data problem, it can notify the human supervisor.
The researches on constructing new ways to “fool” neural networks, called adversar-
ial attacks and on constructing new ways to defend against them, called adversarial
defenses, have been a major focus of the community in the recent years [Goodfellow
et al., 2015; Carlini and Wagner, 2017, etc]. However, even if a new defense mecha-
nism is able to defend against previous attacks, a new kind of attack quickly render
this defense obsolete [Shafahi et al., 2019]. Therefore, the field of adversarial attack
and defense is still wide open and has a big impact on AI safety.

There are two classes of uncertainty [Der Kiureghian and Ditlevsen, 2009], which
also present in neural network-based probabilistic models:

• Aleatoric uncertainty, which is caused by imprecision of measurements of data.
This includes the noise in our observation in dataset D, e.g. imprecision when
assigning class label y given input x during data gathering. Thus, this type of
uncertainty is also referred to as data uncertainty. An illustration of aleatoric
uncertainty is shown in Figure 1.2a.

• Epistemic uncertainty, which includes the uncertainty around the architectural
choice of an NN, the choice of distribution p(y|x;θ), and the parameters θ
that we use. This type of uncertainty therefore includes the model uncertainty
and the parameter uncertainty. Epistemic uncertainty has the properties that

1 Introduction 3

(a) Aleatoric uncertainty (b) Epistemic uncertainty

Figure 1.2: Illustrations of aleatoric and epistemic uncertainty. Blue dots are the
data points, red lines are the predictions, and the green shade is the ±3 standard
deviation around the prediction. Aleatoric uncertainty captures the noise in the
dataset and is thus constant in the case of a dataset with homoscedastic noise,
pictured above. Meanwhile, epistemic uncertainty captures the uncertainty of the
model and thus decreases when more data points are observed.

it can be reduced by adding more observations to the dataset, as shown in
Figure 1.2b.

Both aleatoric and epistemic uncertainty induce the predictive uncertainty of a model
[Gal, 2016], i.e. given an input x, how confident is our model predicting the output
to be y.

A principled and the most explored way to quantify the uncertainty in NNs
is through Bayesian inference. In the so-called Bayesian neural networks (BNNs)
[Neal, 1995], the NN parameters are treated as random variables and the goal of
learning is to infer the posterior probability distribution of the parameters given the
training data. Since exact Bayesian inference in NNs is computationally intractable,
different approximation techniques have been proposed [Neal, 1995; Blundell et al.,
2015; Hernández-Lobato and Adams, 2015; Ritter et al., 2018, etc.]. Given the
approximate posterior, the final predictive distribution is obtained as the expected
predictive distribution under the posterior. This expectation can be seen as an
ensemble of an uncountably infinite number of predictors, where the prediction of
each model is weighted by the posterior probability of the corresponding parameters.

Based on a Bayesian interpretation of dropout [Srivastava et al., 2014], Gal and
Ghahramani [2016] proposed to apply it not only during training but also when
making predictions to estimate predictive uncertainty. Interestingly, dropout has
been also interpreted as ensemble model [Srivastava et al., 2014] where the predic-
tions are averaged over the different NNs resulting from different dropout-masks.
Inspired by this, Osband et al. [2016] and Lakshminarayanan et al. [2017] proposed
to use a simple NN ensemble to quantify the prediction uncertainty, i.e. to train a
set of independent NNs and defining the final prediction as the arithmetic mean of
the outputs of the individual models, which corresponds to defining a uniformly-

1 Introduction 4

weighted mixture model. It is argued, that the model is able to encode two sources
of uncertainty by calibrating the target uncertainty, i.e. uncertainty in target y given
input x in each component and capturing the model uncertainty by averaging over
the components.

In this thesis, we aim at further investigating the potential that lies in employing
mixture distributions for uncertainty quantification. The flexibility of the mixture
model can be increased by learning input-conditioned mixture weights as it is done
by mixture density networks (MDNs) [Bishop, 1994]. Furthermore, one can consider
uncountably many component distributions instead of finitely many of them, which
turns the mixture distribution into a compound distribution. We combine both by
deriving the continuous counterpart of MDNs, which we call compound density net-
works (CDNs). As with MDNs, these networks can be trained by regularized max-
imum likelihood estimation. Moreover, variational Bayes can be employed to infer
the posterior distribution over the CDN parameters, leading to a combination of the
mixture model and the Bayesian approach for predictive uncertainty quantification.
We experimentally show that CDNs allow for better uncertainty quantification and
are more robust to adversarial examples than previous approaches.

This thesis is structured as follows. Chapter 2 will be used as a review of the
background knowledge that is useful for this thesis. Specifically, we will review
neural networks as probabilistic models, the principled approaches of uncertainty
quantification, as well as a brief overview of mixture models and their variants. We
will introduce our proposed approach, the compound density networks in Chapter 3.
Extensive experimental results will be presented in Chapter 4. Finally, we conclude
this thesis in Chapter 5, along with discussion regarding future research in this
direction.

Chapter 2

Background

In this chapter, we will review the background knowledge necessary for the derivation
of our proposed models. We will begin our discussion with a brief review of neural
networks as probabilistic models and their common variants in Section 2.1. We
will then discuss the formal methods of uncertainty quantification in probabilistic
models, in Section 2.2. Specifically, we will review Bayesian statistics in Section 2.2.1
and frequentist statistics in Section 2.2.2. Finally, we will review the mixture models
approaches, along with their variants, such as the mixture of experts and mixture
density networks, in Section 2.3

2.1 Neural networks as probabilistic models

Let D := {xn,yn}Nn=1 with xn ∈ Rp,yn ∈ Rq ∀n = 1, . . . , N be a dataset con-
sisting of N independent and identically distributed (i.i.d.) data points. The goal
of supervised learning, which we focus on in this thesis, is to infer the unknown
conditional probability distribution p(y|x) that describes the relationship between
each output yn and input xn in D. Typically, to approach this problem we assume
a probabilistic model, given by a parametric distribution in the form of p(y|x;θ)
and make statistical estimation on the parameters to find the one that maximize
the probability of dataset D.

Examples of the family of supervised learning problems are regression and clas-
sification. In regression, we assume that the target vector y is a continuous random
variable, for instance in the stock price prediction problem, where y denotes the
stock price and x contains variables that the stock price depends upon, such as the
revenue of a particular company. Meanwhile in classification, we assume that y is
a discrete random variable, i.e. aside of the condition that y ∈ Rq, we have that
yi ∈ {0, 1} and

∑q
i=1 yi = 1. An instance of classification problem is predicting the

class or label y of objects (e.g. cat, dog, etc) in an image x.
In regression problems, we assume that our model p(y|x;θ) is a continuous

probability distribution, while we assume that our model is a discrete probability
distribution in classification problems. A popular choice of a family of distribution
for p(y|x;θ) is Gaussian distribution for regression and Categorical distribution for

5

2 Background 6

classification. Given the choice and parametrization of the model, we can estimate
the parameters θ that fit D the best via maximum likelihood estimation (MLE).
That is, our goal is to find a particular parameter vector θ∗ that maximize the
likelihood function

θ∗ = arg max
θ

p(D|θ)

= arg max
θ

N∏
n=1

p(yn|xn;θ)

= arg max
θ

N∑
n=1

log p(yn|xn;θ) . (2.1)

Commonly we put an additional term in eq. 2.1 to state our prior knowledge about
the parameters θ in the form of prior distribution p(θ), which is useful to avoid
overfitting

θ∗ = arg max
θ

p(θ|D)

= arg max
θ

p(D|θ)p(θ)

= arg max
θ

N∑
n=1

log p(yn|xn;θ) + log p(θ) . (2.2)

We call eq. 2.2 the maximum a posteriori estimation (MAP). The optimization
problems above are most commonly be done using stochastic gradient-based opti-
mization methods [Duchi et al., 2011; Hinton et al., 2012; Kingma and Ba, 2015].

Our focus in this thesis is to parametrize the probabilistic model p(y|x;θ) using
NNs. That is, let f(x;θ) be a neural network, the probabilistic model is now defined
as p(y; f(x;θ)). In the following sections, three commonly used NN types: multi-
layer perceptron, convolutional neural networks, and recurrent neural networks, will
be discussed.

2.1.1 Multi-layer perceptrons

Multi-layer perceptrons (MLPs) are defined as composition of L ∈ N functions

fMLP(x;θ) := (fL ◦ fL−1 ◦ . . . ◦ f1)(x) ,

where each fl is a nonlinear function parametrized by θl := {Wl,bl}, the l-th weight
matrix and bias vector. The overall parameter of MLPs is thus given by θ := {θl}Ll=1.
Formally, for all l, we define

fl :Rkl−1 −→ Rkl

hl−1 7−→ h(WT
l hl−1 + bl) =: hl (2.3)

2 Background 7

where h0 := x, kl ∈ N to be the dimension of hl, and h to be an arbitrary component-
wise nonlinear function such as sigmoid, hyperbolic tangent, or ReLU [Nair and
Hinton, 2010]. Observe that the above definition implies that Wl ∈ Rkl−1×kl and
bl ∈ Rkl . Moreover, k0 = dim x = p and kL = dim y = q.

There are several variables that define the exact form of an MLP. First, the value
of L ∈ N, which corresponds to the number of nonlinear functions composing f . We
call this number the depth of the NN. Second, the dimensionality of h1, . . . ,hL−1,
which we call the width of each layer of the NN. Together with the depth, the width
of an NN represents the size of the NN. The final variable needs to be defined is
the choice of h, which commonly chosen as (component-wise) sigmoidal or rectifier
functions. Altogether, they constitute the architecture of the MLP.

2.1.2 Convolutional neural networks

Convolutional neural networks (CNNs) [LeCun et al., 1989], as the name suggests,
are NNs which use convolution operator in their computation. Specifically, CNNs
differ from MLPs in the way each layer’s weight matrix Wl interacts with the in-
put hl−1, where instead of matrix-vector multiplication, convolution is employed.
Formally, in analogue to eq. 2.3, we define

fl :Rkl−1 −→ Rkl

hl−1 7−→ h(Wl ∗ hl−1 + bl) =: hl (2.4)

where each Wl is usually a collection of small matrices (e.g. 128 3x3-matrices).
Furthermore, we define CNNs to be

fCNN(x,θ) := (fL ◦ fL−1 ◦ . . . ◦ f1)(x) .

By using the convolution operator, CNNs are able to capture local properties oc-
curring in many places in the input. Moreover, as the weights are usually a collection
of small matrices and shared over the spatial location of the input, CNNs have much
fewer parameters than MLPs. Finally, typically it is the case that dim hl−1 > dim hl,
either via an explicit sub-sampling operator (e.g. pooling) or implicitly as a result of
the convolution. Those three properties, called (i) local receptive fields, (ii) weight
sharing, and (iii) sub-sampling, are the building blocks of CNNs [Bishop, 2006]. In
practice, usually, CNNs are used in conjunction with MLPs [Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014]. That is, we usually use a CNN for the first L0 lay-
ers, where L0 < L, and use an MLP for the rest L − L0 layers, with the output of
the first L0 layers is the input of the MLP.

2.1.3 Recurrent neural networks

Recurrent neural networks (RNNs) [Rumelhart et al., 1986] are neural networks
constructed based on the idea of parameter sharing over each “time-step” of data.

2 Background 8

This allows RNNs to handle variable-length sequential data, such as textual data.
Let a data point x := {x(t)}Tt=1 be sequence of length T , where we call x(t) ∈ Rp to
be the input at time-step t. At the simplest formulation, an RNN is defined as a
function

fRNN :Rp × Rk −→ Rk

x(t),h(t−1) 7−→ h(WTx(t) + VTh(t−1) + b) =: h(t) (2.5)

and is applied recursively at each time-step t. Note that the RNN defined above is
parametrized by two matrices W ∈ Rp×k and V ∈ Rk×k and a vector b ∈ Rk which
are shared over all time-step t. Meanwhile h(t) ∈ Rk is called the hidden state at
time-step t. One can then use the hidden state of each time-step or only the last
state h(T) to compute other quantities, e.g. as inputs to MLPs to do supervised
learning.

RNNs have been extensively studied and there exist more sophisticated variations
of them, such as Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber,
1997] and Gated Recurrent Unit (GRU) [Cho et al., 2014]. They differ from eq. 2.5
in the way that fRNN incorporates the more complicated operations, such as gating
mechanisms. We refer the reader to Lipton et al. [2015] for more details.

2.2 Method of uncertainty quantification

Notice that MLE (eq. 2.1) and MAP (eq. 2.2) objective for training probabilistic
NNs lead to a single solution of the parameter θ∗, referred to as a point estimate.
This corresponds to a delta distribution over the parameter θ, where

p(θ) =

{
1, if θ = θ∗

0, otherwise .

It can be shown that this distribution is the limit of a Gaussian distribution centered
around θ∗ when the variance goes to zero. Thus, the uncertainty over the parameter
is not quantified in point estimation which is typically used to train NNs, explaining
why NNs tend to be overconfident in their prediction. To remedy this situation,
we can employ a range of principled inference techniques over θ that come from
Bayesian and frequentist statistics, which we will discuss in the following sections.

2.2.1 Bayesian statistics

The core of Bayesian statistics is the assumption that the parameter of a probabilistic
model is a random variable and we would like to use the posterior distribution to
summarize everything we know about it [Murphy, 2012]. The goal of Bayesian
statistics is therefore to do Bayesian inference: given observations D, we would like
to infer the posterior distribution p(θ|D) of model’s parameter, according to Bayes’
rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (2.6)

2 Background 9

We can then integrate our prediction w.r.t. the posterior distribution to get the
posterior predictive distribution

p(y|x,D) =

∫
p(y|x;θ)p(θ|D) dθ , (2.7)

in which the uncertainty over the parameters encoded in the posterior is incorpo-
rated.

Notice the connection between Bayesian inference and MAP estimation (eq. 2.2).
Although in MAP estimation we also work with the posterior distribution, it is a
point estimate method, thus unlike Bayesian inference, we do not have information
about the full posterior distribution and the parameter uncertainty is not quantified.

Although Bayesian inference has a huge advantage over point estimate methods,
it is notoriously hard to be done. This is because of the denominator presents in
the Bayes’ rule (eq. 2.6).

p(D) =

∫
p(D|θ)p(θ) dθ (2.8)

which contains intractable integral even in moderately-sized models. As an illus-
tration, assume that θ = {0, 1}d. This implies that the integration can be done as
a summation over 2d possible values of θ, which is already intractable for, let us
say d = 100. This fact is made even worse knowing that the parameters of modern
NNs are continuous variables, where d can be up to tens of millions. Fortunately,
there exist approximation methods that make Bayesian inference tractable. We will
discuss these methods, in the context of Bayesian neural networks, in the followings.

Let θ be the parameter of a neural network. In Bayesian neural networks (BNNs),
following the framework of Bayesian inference, our goal is to infer the posterior
distribution p(θ|D) of θ given dataset D. In neural networks, due to the highly
nonlinear dependence of network function (e.g. fMLP) on the parameters values and
the high dimensionality of the parameters, exact Bayesian inference cannot be done
in a tractable manner. In fact, even the log-posterior function, used in MAP es-
timate methods, is highly non-convex and complicated, thus point estimate of the
NN parameters is already a hard problem, let alone Bayesian treatment [Bishop,
2006]. Fortunately, there exist several families of approximation techniques to ap-
proximate the posterior distribution of a BNN in a tractable fashion, such as Laplace
approximation, sampling methods, and variational Bayesian inference.

Laplace approximation

Laplace approximation [MacKay, 1992] is a simple local (around a certain point)
approximation of the exact posterior. Specifically, given the posterior mode (the
MAP estimate), Laplace approximation fits a Gaussian around it with a covariance
equals to the inverse of the Hessian matrix evaluated at that point, that is

p(θ|D) := N (θ;θ∗,H−1|θ∗) , (2.9)

2 Background 10

2 0 2 4
0.0

0.2

0.4

0.6

0.8

Figure 2.1: Illustration of the Laplace approximation applied to the distribution
p(z) ∝ exp(−z2/2)σ(20z + 4) where σ(z) is the sigmoid function. The normalized
distribution p(z) is shown in blue, together with the Laplace approximation centered
on the mode z∗ = 0 of p(z) in red. Adapted from Bishop [2006].

where θ∗ is the MAP estimate and H is the Hessian matrix of the posterior with
respect to θ. An illustration of Laplace approximation is shown in Figure 2.1.

Note that Laplace approximation is a local approximation (i.e. around a given
point) and thus unable to capture the global properties of the exact posterior. More-
over, computing NNs’ inverse Hessian is non-trivial as it has quadratic space and
cubic time complexity. Fortunately, we can use a cheap approximation of the Hes-
sian, for instance, Ritter et al. [2018] proposed to use Kronecker-factored Fisher
information matrix or Gauss-Newton matrix as an approximation of the Hessian
alongside matrix-variate normal approximate posterior [Gupta and Nagar, 1999],
which makes the approximation highly efficient. Furthermore, they show competi-
tive results compared to other approximate Bayesian inference methods.

Sampling methods

Approximate inference methods based on sampling methods, also known as Monte
Carlo techniques, are methods of approximating some unknown quantities through
numerical sampling [Bishop, 2006]. In BNNs specifically, sampling methods’ goal is
to draw independent samples from the exact posterior of the parameters, which are
then used to compute some interesting quantities, such as the expectation E[g] =∫
g(θ)p(θ|D) dθ of some function g (e.g. eq. 2.7), using Monte Carlo integration.

Notice that as long as the methods sample from the exact posterior, the estimate
will also be unbiased, unlike Laplace approximation. This property makes this class
of methods powerful and attractive to practitioners.

One of the most popular subfamilies of sampling methods for BNNs is Markov
chain Monte Carlo (MCMC) [Metropolis and Ulam, 1949], where Markov chain is
constructed such that its equilibrium distribution coincides with the BNNs’ posterior
distribution. Hamiltonian Monte Carlo (HMC) [Neal, 1993], which uses Hamilto-
nian dynamics to reduce the correlation between successive Markov chain transition,
is one of the most popular MCMC methods. However, HMC is not scalable to large

2 Background 11

2 1 0 1 2 3
2

1

0

1

2

3

Figure 2.2: Illustration of the variational Bayesian inference. The exact posterior
is shown in green, while the approximate/variational posterior is shown in red.
Adapted from Bishop [2006].

scale datasets. Stochastic gradient Langevin dynamics (SGLD) [Welling and Teh,
2011] is therefore proposed as a combination of highly scalable stochastic optimiza-
tion [Robbins and Monro, 1951] and Langevin dynamics [Neal et al., 2011]. Patter-
son and Teh [2013] further extends SGLD to incorporate preconditioner matrix to
SGLD. Chen et al. [2014] further proposed stochastic gradient HMC, marrying the
idea of SGLD and HMC, which enables HMC to be used in large scale datasets.

Variational Bayesian inference

Variational Bayesian inference [Peterson, 1987; Hinton and Van Camp, 1993], also
called variational Bayes or VB, is a family of approximate Bayesian inference meth-
ods where a tractable model q(θ;ω) parametrized by ω, called variational posterior,
is used to approximate the unknown exact posterior. An illustration of VB is shown
in Figure 2.2. Following the calculus of variations framework, q(θ;ω) is found by
maximizing the objective functional with respect to the variational parameter ω.
This objective functional is derived from the KL-divergence between the variational
posterior and the exact posterior, and can be shown to be the lower bound of the
marginal likelihood p(D). The objective functional is therefore called the evidence
lower bound (ELBO) and is defined as

L(ω) := Eq(θ;ω)[p(y|x;θ)]−DKL[q(θ;ω)‖ p(θ)] . (2.10)

Clearly, unless q(θ;ω) = p(θ|D), the approximation found by VB is biased. How-
ever, the advantage of using VB is that unlike sampling methods, it is essentially an
optimization method in which standard gradient based optimization methods can
be employed, thus VB can be efficiently executed.

In the recent years, VB has become popular in Bayesian neural networks commu-
nity. Graves [2011] proposed to use fully-factorized Gaussian variational posterior
for BNNs and offered practical advices that are useful in implementing and training
BNNs. Kingma and Welling [2014] proposed a stochastic gradient variational Bayes

2 Background 12

estimator (SGVB) along with reparametrization trick to enable end-to-end training
on generative models with VB. Blundell et al. [2015] further uses the reparametriza-
tion trick for BNNs along with fully-factorized Gaussian variational posterior and
mixture of Gaussian prior. Different forms of variational posterior, such as matrix-
variate Gaussian [Louizos and Welling, 2016; Sun et al., 2017] and compound dis-
tribution [Louizos and Welling, 2017], have also been used. Inspired by Goodfellow
et al. [2014], the usage of implicit distributions, i.e. distributions which easy to sam-
ple from but intractable to evaluate, have also been used, such as by Krueger et al.
[2017], Louizos and Welling [2017], and Pawlowski et al. [2017]. Dropout [Srivastava
et al., 2014] which is originally introduced as regularization method, has recently
been shown by Gal and Ghahramani [2016] to be approximating (in VB sense) the
posterior of a deep Gaussian process [Damianou and Lawrence, 2013], giving rise to
a method called MC-dropout. Furthermore, very recently, the connection between
VB and natural gradient [Amari, 1998], which resulting in simple stochastic algo-
rithms based on Adam [Kingma and Ba, 2015] and K-FAC [Martens and Grosse,
2015], has been proposed by Zhang et al. [2018] and Khan et al. [2018].

2.2.2 Frequentist statistics

Exactly the opposite to Bayesian statistics, the core of frequentist statistics is the
assumption that parameters are fixed but unknown quantities, while data are ran-
dom [Murphy, 2012]. Given the data samples, the goal of frequentist methods is,
therefore, to estimate the exact values of the parameters through estimators such
as MLE. Thus, unlike Bayesian methods, we cannot directly quantify the epistemic
uncertainty of a model. Methods such as confidence calibration (or calibration for
short), a frequentist notion of uncertainty which measure the discrepancy between
subjective forecasts and long-run frequencies, can be used to measure the confidence
of an estimator [DeGroot and Fienberg, 1983; Dawid, 1982]. Another simple way to
estimate the properties (such as variance and confidence interval) of an estimator
is through bootstrap [Efron, 1992]. Bootstrap works by resampling a given dataset
without replacement to get several “fake” datasets, which are then used to estimate
the parameters. The uncertainty induced by bootstrap’s resampling process is then
the uncertainty of the parameters estimates.

Recently, those frequentist methods have been applied for uncertainty quantifi-
cation in NNs. Osband et al. [2016] uses bootstrap to train several NNs to provide
uncertainty estimate of an agent’s policy in reinforcement learning problems. Laksh-
minarayanan et al. [2017] proposed to use proper scoring rules [Gneiting and Raftery,
2007], i.e. measures of calibration quality e.g. negative log-likelihood (NLL), as the
objective function of an NN. Additionally, similar to bootstrap, they train several
NNs in parallel to quantify the uncertainty of the parameters estimate and hence
the prediction uncertainty. However, unlike traditional bootstrap, they use the full
dataset and rely on random initialization as the source of uncertainty. They show
that the overall method, called Deep Ensemble, is competitive to or even better
than BNNs in the estimation of predictive uncertainty. Guo et al. [2017] showed

2 Background 13

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

p(
x)

Figure 2.3: Illustration of a mixture distribution (red) over one-dimensional space.
The mixture components (blue) are assumed to be Gaussian. Adapted from Bishop
[2006].

that modern deep NNs are not well-calibrated due to several factors such as model
complexity and the usage of batch normalization [Ioffe and Szegedy, 2015], and
proposed to fix the problem using Platt scaling [Platt et al., 1999].

Notice that both of the ensemble approaches proposed by Lakshminarayanan
et al. [2017]; Osband et al. [2016], which use the arithmetic mean of the predictive
distribution of K neural networks, can be seen as mixture models: The K indepen-
dent neural networks in the ensembles are parametrizing the K mixture components,
while the corresponding mixing probabilities are uniform. We, therefore, shall dis-
cuss mixture models further in the following section.

2.3 Mixture models

Mixture models are the simplest form of latent variable models (LVMs) where the
latent variable z ∈ {1, . . . , K} takes a value from a discrete latent space [Murphy,
2012]. Mixture models consist of K mixture components p(x|z) and a mixing distri-
bution p(z), and defined as

p(x) =
K∑
k=1

p(x|z = k)p(z = k) , (2.11)

where x is an arbitrary random variable we would like to model. Note that we can
see z as a variable that indexes the mixture components.

The choice of the mixture components and the mixing distribution are arbitrary
and induce different family of models. For instance, Gaussian mixture components
paired with Categorical mixing distribution yields the mixture of Gaussian model
[Dasgupta, 1999] (Figure 2.3), while Multinomial distributions and a Dirichlet distri-
bution as the mixture components and the mixing distribution respectively is called
the latent Dirichlet allocation [Blei et al., 2003]. Mixture models offer a flexible
way of modeling data distribution as it can model multimodal distributions. For

2 Background 14

instance, given a mixture of Gaussian model, it can capture K distinct modes that
possibly exist in the true data distribution.

In the following sections, we will present some variants of the mixture model
family that are specifically designed for modeling the conditional distribution of
data, e.g. for classification and regression.

2.3.1 Conditional mixture models

As the name suggests, conditional mixture models are mixture models where the
mixture components are conditional distributions p(y|x, z). This induces mixture
models in the form of

p(y|x) =
K∑
k=1

p(y|x, z = k)p(z = k) . (2.12)

Figure 2.3 is still a valid illustration for conditional mixture models, provided that
one change the x-axis to represent variable y and y-axis to represent p(y|x).

The conditional mixture models are often used in regression and classification
problems where the true conditional density we are modeling after is multimodal.
For instance, in regression problems, it is common to use linear-Gaussian models as
the mixture components, which results in mixture of linear regression [Bishop, 2006]
model, described as

p(y|x;θ) =
K∑
k=1

N (y|WT
k x,Σk)p(z = k) , (2.13)

where Wk and Σk are the weight matrix and covariance matrix of the k-th mixture
component, and θ := {Wk,Σk}Kk=1 are the collection of all such matrices. For
binary classification problems, one can use mixture of logistic models [Bishop, 2006]
instead, as the counterpart of the mixture of linear regression. This model is defined
as the mixture of K independent logistic regression models

p(y|x;θ) =
K∑
k=1

Bern(y|σ(WT
k x))p(z = k) , (2.14)

where σ(x) := 1/(1 + e−x) is the sigmoid function and θ := {Wk}Kk=1. The gen-
eralization of this model to a mixture of softmax model, to handle more than two
possible values of label y, is straightforward.

2.3.2 Mixture of experts

Observe that in the conditional mixture models, a single mixing distribution is be-
ing used to model all input data x. This makes the resulting predictive distribution
p(y|x;θ) limited. Mixture of experts (MoEs) model [Jacobs et al., 1991] further

2 Background 15

increase the capability of conditional mixture models by allowing the mixing distri-
bution to be conditioned to the inputs, i.e. the mixing probability is a function of
the input variables. Formally, MoEs is defined as

p(y|x;θ) =
K∑
k=1

p(y|x, z = k;θ)p(z = k|x;θ) . (2.15)

In MoEs, we also call the mixture components as experts while the mixing dis-
tribution is also known as gating function. To train MoEs, one can employ well-
established methods for learning LVMs, such as expectation-maximization (EM)
with iterative re-weighted least squares being employed in the M step [Jordan and
Jacobs, 1994].

2.3.3 Mixture density networks

Mixture density networks (MDNs) have been proposed to further improve the flexi-
bility of MoEs by using a single neural network to model both mixture components
and the mixing distribution. This way, MDNs can benefit from the highly powerful
and nonlinear properties of the neural network. Furthermore, MDNs are efficient as
both the components and the mixing distribution are sharing the same hidden units
and parameters of the NN.

The functional form of MDNs is, in general, identical to that of MoEs. However,
as discussed above, we are now assuming that θ is the parameter vector of a neural
network f , mapping the input x to both the parameters of the mixing and the
component distributions:

p(y|x;θ) =
K∑
k=1

p(y; f(x, z = k;θ))p(z = k; f(x;θ)) , (2.16)

where we have assumed that the index of the mixture component z is part of the
NN f .

As MDNs are based on highly nonlinear function, unlike MoEs, EM algorithm
cannot be used to train them. Fortunately, standard gradient-based optimization
methods can be employed to maximize the maximum likelihood objective of MDNs

log p(D;θ) =
N∑

n=1

log
K∑
k=1

p(y; f(x, z = k;θ))p(z = k; f(x;θ)) , (2.17)

to find the optimal MDNs’ NN parameter.

Chapter 3

Compound Density Networks

In Chapter 2 we have discussed a range of uncertainty quantification methods from
different perspectives and reviewed mixture models along with their variants. We
have observed that mixture models or ensembles interpretations found in the work of
Osband et al. [2016], Deep Ensemble [Lakshminarayanan et al., 2017], and Dropout
[Srivastava et al., 2014] are useful for quantifying predictive uncertainty of an NN.
We have also observed that more sophisticated mixture models exist, e.g. MoEs
(Section 2.3.2) and MDNs (Section 2.3.3). The natural question that we raise is
then, can we build upon these more sophisticated mixture models, a novel class of
models which works better than the previous approaches in estimating predictive
uncertainty quantification?

To fulfill that goal, in this chapter, we will present the compound density net-
works (CDNs): a new class of models which can be seen as the generalization of
MDNs (Section 3.1). Training CDNs can be done by employing maximum-likelihood
estimation over CDNs’ parameters (Section 3.1.1), or by employing Bayesian infer-
ence (Section 3.1.2). An instance of CDNs, the probabilistic hypernetworks will then
be presented extensively in Section 3.2. Finally, in Section 3.3, we will conclude
this chapter with the comparison of CDNs to some recent works that have a similar
functional form to CDNs.

3.1 Compound density networks

Motivated by MDNs, we generalize it from a finite mixture model into a mixture
of uncountable components. This can be done by letting the discrete univariate
random variable z of MDNs (eq. 2.16) be a continuous multivariate random variable
z. The summation in eq. 2.16 then becomes an integral, i.e.

p(y|x;θ) =

∫
p(y; f(x, z;θ))p(z; f(x;θ)) dz . (3.1)

Furthermore, we relax the MDNs assumption that the overall mixture distribution
(i.e. both components and mixing distribution) is parametrized by a single NN f . We
instead let f to only parametrize the component distribution, retaining the original

16

3 Compound Density Networks 17

parameter θ, and introduce another NN g parametrized by φ, which parametrizes
the mixing distribution. Therefore, we have

p(y|x;θ,φ) =

∫
p(y; f(x, z;θ))p(z; g(x;φ)) dz

= Ep(z;g(x;φ)[p(y; f(x, z;θ))] . (3.2)

We call models in this form compound density networks (CDNs), as they form com-
pound distributions and we can see them as the continuous counterpart of MDNs.

The log-likelihood function of CDNs is given by

log p(D;θ,φ) =
N∑

n=1

logEp(z;g(xn;φ)[p(yn; f(xn, z;θ))] , (3.3)

and the training can be done by employing point estimate methods such as MLE
and MAP, or by employing Bayesian inference (Section 2.2.1) over the parameters
θ,φ. We will present both technique in the following sections.

3.1.1 Maximum-likelihood CDNs

Algorithm 3.1 The training procedure of CDNs with LML.

Require:

Mini-batch size M , number of samples S of z, regularization strength λ, and

learning rate α.

1: while the stopping criterion is not satisfied do

2: {xm,ym}Mm=1 ∼ D . Sample mini-batch from dataset

3: for m = 1, . . . ,M ; s = 1, . . . , S do

4: zms ∼ p(z; g(xm;φ)) . Use reparametrization trick

5: end for

6: EDEz[p(y|x, z;θ)] = 1
M

∑M
m=1 log 1

S

∑S
s=1 p(ym; f(xm, zms;θ))

7: L(θ,φ) = EDEz[p(y|x, z;θ)]− λ
∑M

m=1DKL[p(z; g(xm;φ))‖p(z))]

8: θ ← θ + α∇θL(θ,φ)

9: φ← φ+ α∇φL(θ,φ)

10: end while

To train CDNs, as with MDNs, we can use MLE to estimate the parameters
θ,φ by maximizing the log-likelihood function given by eq. 3.3. Notice that the log-
likelihood function contains an intractable integral (see eq. 3.2) which is intractable
in general. Therefore we have to resort to approximation. Fortunately we can
take cues from a widely-used and efficient estimator called the SGVB [Kingma
and Welling, 2014]: We use the so-called reparametrization trick to sample z from
the mixing distribution p(z; g(xn;φ)) and use Monte Carlo integration w.r.t. these

3 Compound Density Networks 18

samples to approximate the integral. The usage of the reparametrization trick is
crucial as this technique allows gradients to flow through the sampling operations,
thus allowing us to use standard gradient-based optimization algorithms. As the
choice of p(z; g(xn;φ)) is still abstract at this point, we will give further detail how
the reparametrization trick can be done when we discuss a particular CDN model
in Section 3.2.

Using only the log-likelihood function (eq. 3.3) as an optimization objective is
known to lead to overfitting [Bishop, 2006], thus some forms of regularization are
desired. The most straightforward way to do this is to use the standard weight decay
over the parameters θ and φ. Another form of regularization that can be done is to
constrain the mixing distribution p(z; g(xn;φ)) to be close to some p(z), by means
of KL-divergence. The regularized objective is thus given by

LML(θ,φ) = log p(D;θ,φ)− λ
N∑

n=1

DKL[p(z; g(xn;φ))‖ p(z)] , (3.4)

where λ is the weighting coefficient to control the strength of the KL-divergence reg-
ularization over z. The choice of p(z) is dependent to the choice of the mixing dis-
tribution, as we would like to keep the KL-divergence term analytically computable.
Thus, we will discuss this in detail when we discuss the concrete CDN model in
Section 3.2. All in all, the overall training procedure of maximum-likelihood CDNs
is summarized in Algorithm 3.1.

3.1.2 Bayesian CDNs

Algorithm 3.2 The training procedure of CDNs with LVB.

Require:

Mini-batch size M , number of samples S used for Monte Carlo integration of

eq. 3.3, and learning rate α.

1: while the stopping criterion is not satisfied do

2: {xm,ym}Mm=1 ∼ D
3: θ,φ ∼ q(ψ;ω)

4: for m = 1, . . . ,M ; s = 1, . . . , S do

5: zms ∼ p(z; g(xm;φ))

6: end for

7: EDEz[log p(y|x, z;θ)] = 1
M

∑M
m=1 log 1

S

∑S
s=1 p(ym; f(xm, zms;θ))

8: L(ω) = EDEz[log p(y|x, z;θ)]−DKL[q(ψ;ω)‖ p(ψ)]

9: ω ← ω + α∇ωL(ω) . Update variational parameters ω

10: end while

Instead of using the point estimate approach to train CDNs, we can instead
employ Bayesian inference over the parameters θ and φ to further add additional

3 Compound Density Networks 19

sources of uncertainty on CDNs’ predictive distribution, i.e. by also quantifying the
parameters uncertainty. Formally, let ψ := {θ,φ} for brevity. We treat it as a
random variable distributed by some prior p(ψ). By marginalizing it, we get the
Bayesian CDNs model

p(y|x) =

∫
p(y|x;ψ)p(ψ) dψ

=

∫∫
p(y; f(x, z;θ))p(z; g(x;φ))p(ψ) dz dψ . (3.5)

Our goal, following the standard Bayesian statistics described in Section 2.2.1,
is to infer the posterior distribution p(ψ|D) of CDNs’ parameters ψ. This in turn
induces the posterior predictive distribution of Bayesian CDNs

p(y|x,D) =

∫∫
p(y; f(x, z;θ))p(z; g(x;φ))p(ψ|D) dz dψ . (3.6)

Using variational Bayesian inference (VB) (Section 2.2.1), by proposing an ap-
proximate posterior q(ψ;ω) ≈ p(ψ|D), gives us the ELBO objective (eq. 2.10) of
CDNs:

LVB(ψ) = Eq(ψ;ω)[log p(y|x;ψ)]−DKL[q(ψ;ω)‖ p(ψ)]

= Eq(ψ;ω)

[
log

∫
p(y; f(x, z;θ))p(z; g(x;φ)) dz

]
−DKL[q(ψ;ω)‖ p(ψ)] .

(3.7)

The posterior predictive distribution of Bayesian CDNs can then be approximated
w.r.t. q(ψ;ω):

p(y|x,D;ω) =

∫∫
p(y; f(x, z;θ))p(z; g(x;φ))q(ψ;ω) dz dψ . (3.8)

We present the overall training procedure of Bayesian CDNs in Algorithm 3.2.
Note that, other Bayesian inferences on ψ obviously applicable in Bayesian

CDNs. For example, we can also infer the posterior distribution by employing
MC-dropout [Gal and Ghahramani, 2016]. That is, we simply apply dropout at
each hidden layer of g and train the model using standard point estimate methods.
To get the prediction, we simply average S samples of prediction given by f .

Employing VB is an attractive option for training CDNs, due to a couple of
reasons. First, the uncertainty in parameters ψ is quantified, resulting in a hypo-
thetically better uncertainty estimate in the predictive distribution. That is, whereas
maximum-likelihood CDNs potentially quantify the heteroscedastic aleatoric uncer-
tainty (captured by z), Bayesian CDNs could potentially quantify both the aleatoric
and epistemic uncertainty. Second, as shown in the objective of variational CDNs in
eq. 3.7, no hyperparameter is needed. Therefore training variational CDNs should be
relatively more straight-forward than training CDNs with the regularized maximum-
likelihood objective (eq. 3.4), where we need to adjust the regularization hyperpa-
rameter λ.

3 Compound Density Networks 20

hx φ(x)
W1 ∼ p(W1;π1(x)) W2 ∼ p(W2;π2(h))

π1(x) = g1(x;ψ1) π2(h) = g2(h;ψ2)

Figure 3.1: An example of a probabilistic hypernetwork applied to a two-layer MLP.

3.2 Probabilistic hypernetworks

CDN is an abstract framework for modeling compound distributions with NNs. In
this section, we present a concrete example of how CDNs can be implemented.

Recall that we can see CDNs as defined in eq. 3.2 as two neural networks f
and g, parametrized by θ and φ, respectively. We assume that g parametrizes the
generation of the stochastic components z of f (e.g. additional inputs, hidden units,
or weights of f), depending on the input x. In this model, we now define z to
be the weights of f . In deterministic setting, this idea is known as fast weights
or hypernetworks [Schmidhuber, 1992; Jia et al., 2016; Ha et al., 2017]. We can,
therefore, see CDNs as the probabilistic generalization of the hypernetworks by
assuming that the outputs of weight-generating network g to be the parameters of
the CDNs’ mixing distribution p(z; g(x;φ)), which results in a concrete instance of
CDNs model called probabilistic hypernetworks. In the following, we will concretely
define the choice of this distribution among other details.

For simplicity let us assume that f is a multi-layer perceptron (MLP) consisting
of L layers, parameterized by a collection of weight matrices1 z := {Wl}Ll=1. We
further assume that we do not use the deterministic parameters θ, that is we write
the network as f(x; z). Note that, as before, we assume that ψ = {θ,φ}, thus as
θ = ∅, this implies that ψ = φ. Hence, we will use ψ and φ interchangeably from
now on. Furthermore, let h1, . . . ,hL−1 be the hidden states of f , with h0 := x and
hL := f(x; z). We now define g to be a sequence of L MLPs

g(x;ψ) := {gl(hl−1;ψl)}Ll=1

ψ := {ψl}Ll=1 . (3.9)

Note that each gl maps hl−1 (instead of x) to the parameters of a distribution
p(Wl; gl(hl−1;ψl)) over weight matrix Wl. The justification of this modeling deci-
sion is presented in Proposition 3.1.

Proposition 3.1. Given all definitions above, we can sufficiently define gl(x;ψl) :=
gl(hl−1;ψl) , for all l = 1, . . . , L.

3 Compound Density Networks 21

x

W1

h1

W2

h2

W3

y

Figure 3.2: Graphical model of three-layer probabilistic hypernetworks.

Proof. For l = 1, the claim trivially holds as h0 = x implies g1(h0;ψ1) = g1(x;ψ1).
Now, it is sufficient to show that for all l = 2, . . . , L, Wl is conditionally independent
to x given hl−1. We write the probabilistic hypernetworks as a graphical model,
illustrated w.l.o.g. in Figure 3.2. Let l > 1 be arbitrary. Notice that by assumption,
hl−1 is in the conditioning set. We observe that, although hl−1 is a collider in the
graph, it is easy to see that hl−1 is not a collider in any path from x to Wl. Thus,
any of these paths is blocked by hl−1, implying x and Wl to be d-separated given
hl−1. Therefore, Wl ⊥⊥ x |hl−1.

We further assume independence between each Wl and let the joint distribution
be given by

p(z; g(x;ψ)) :=
L∏
l=1

p(Wl; gl(hl−1;ψl)) . (3.10)

Furthermore, to make our probabilistic hypernetworks fit the VB framework,
we need further assumptions on ψ, namely the choice of the approximate posterior
q(ψ;ω) and the prior p(ψ). Similar to our assumption about z, for each hyper-
networks gl, its parameters ψl are factored layer-wise. Thus, defining Kl to be the
number of layers in gl, we define

q(ψ;ω)) :=
L∏
l=1

Kl∏
k=1

q(ψlk;ωlk)

p(ψ) :=
L∏
l=1

Kl∏
k=1

p(ψlk) . (3.11)

An illustration of the probabilistic hypernetworks’ computational graph is pre-
sented in Figure 3.1. Given the construction of the probabilistic hypernetworks based
on variational CDNs above, we are now ready to concretely define the choice of sta-
tistical model for each of the p(Wl; gl(hl−1;ψl)), q(ψlk;ω), and p(ψlk), and hence
the overall mixing distribution p(z; g(x;ψ)), the variational posterior q(ψ;ω)), and
the prior p(ψ).

1We assume the bias vectors are absorbed to the corresponding weight matrices.

3 Compound Density Networks 22

3.2.1 Probabilistic hypernetworks with matrix-variate nor-
mal distributions

A distribution that was recently applied as the statistical model of choice in BNNs
[Louizos and Welling, 2016; Sun et al., 2017; Zhang et al., 2018; Ritter et al., 2018]
is the matrix-variate normal (MVN) distribution [Gupta and Nagar, 1999], denoted
by MN . An MVN is the generalization of multi-variate normal for matrix random
variable and is parametrized by three parameter matrices: a mean matrix M and
two covariance factor matrices A and B, and is defined as follows.

Definition 3.2 (Gupta and Nagar, 1999). A matrix random variable X ∈ Rm×n

is distributed by a matrix-variate normal distribution with mean matrix M ∈ Rm×n

and two (positive semi-definite) covariance factors A ∈ Rm×m and B ∈ Rn×n, if

vec(X) ∼ N (vec(X); vec(M),B⊗A) ,

We denote this distribution as MN (X; M,A,B).

The following proposition shows that an MVN requires fewer parameters com-
pared to a multi-variate Gaussian. This motivates us to use it as the statistical
models over the weight matrices.

Proposition 3.3. Let X ∈ Rm×n be a random matrix. Then using an MVN to
model the distribution of X is more efficient than using a multi-variate Gaussian.

Proof. By definition, we can write the MVN distribution over X as

N (vec(X); vec(M),B⊗A) ,

for some matrices M,A,B. It is implied that vec(M) ∈ Rmn, A ∈ Rm×m, and
B ∈ Rn×n. Thus the number of parameters of this distribution is mn+m2 + n2. In
contrast, let N (vec(X);µ; Σ) be the multi-variate Gaussian over X, for some vector
µ and matrix Σ. This implies that µ ∈ Rmn and Σ ∈ Rmn×mn. Therefore the
number of parameters of this distribution is mn+(mn)2. Observe that m,n ∈ N. For
m,n > 2, we have thatm+n ≤ 2 max(m,n) < mn, thusm2+n2 < (m+n)2 < (mn)2.
Therefore, asymptotically in the size of X, the MVN is more efficient than the multi-
variate Gaussian.

Given the above mixing distribution, the reparametrization trick can be done
layer-wise, described in the following proposition.

Proposition 3.4. Let M ∈ Rm×n, A ∈ Rm×m, B ∈ Rn×n be some matrices and
Im ∈ Rm×m, In ∈ Rn×n be identity matrices. Let X ∈ Rm×n be a matrix random
variable distributed by MN (X; M,A,B). Then it can be sampled by

E ∼MN (E; 0, Im, In)

X = M + A
1
2 E(B

1
2)T

3 Compound Density Networks 23

Proof. By definition, we have that

vec(X) ∼ N (vec(X); vec(M),B⊗A) .

Recall the property of multi-variate Gaussian

x = µ+ Σε ⇐⇒ x ∼ N (x;µ,Σ) ,

for some x,µ, ε ∈ Rn and Σ ∈ Rn×n, with ε ∼ N(0, I). Furthermore note that

(B⊗A)
1
2 = B

1
2 ⊗A

1
2 and vec(ACB) = (BT ⊗A)vec(C). Therefore, we can write

the sampling procedure as follows.

vec(E) ∼ N (vec(E); 0, Imn) = N (vec(E); 0, In ⊗ Im)

vec(X) = vec(M) + (B⊗A)
1
2 vec(E)

= vec(M) + (B
1
2 ⊗A

1
2)vec(E)

= vec(M) + vec(A
1
2 E(B

1
2)T) .

Undoing the vectorization operator, we get

E ∼MN (E; 0, Ip, Iq)

X = M + A
1
2 E(B

1
2)T .

Observe that, from the proposition above, it is easy to see that

E ∼MN (E; 0, Im, In) ⇐⇒ eij ∼ N (eij; 0, 1)

for all elements eij in E.
The final necessary detail of the probabilistic hypernetworks is how to compute

the KL-divergence between two MVN distributions. We present this as a proposition
as follows.

Proposition 3.5 (Louizos and Welling, 2016). Let X ∈ Rm×n, A1,A2 ∈ Rm×m,
B1,B2 ∈ Rn×n. Define

p(X) :=MN (X; M1,A1,B1)

q(X) :=MN (X; M2,A2,B2) .

Then

DKL[p(X)‖q(X)] =
1

2

(
tr(A−12 A1)tr(B

−1
2 B1)

+ tr((M2 −M1)TA−12 (M2 −M1)B−12)

−mn+ n log |A2|+m log |B2| − n log |A1| −m log |B1|
)
.

3 Compound Density Networks 24

Proof. By definition of MVN, we can write

p(X) = N (vec(X); vec(M1),B1 ⊗A1)

q(X) = N (vec(X); vec(M2),B2 ⊗A2) .

By the standard result in multivariate Gaussian (e.g. see Duchi), the KL-divergence
between them is

DKL[p(X)‖ q(X)] =
1

2

(
tr(B2 ⊗A2)

−1tr(B1 ⊗A1)

+ (vec(M2 − vec(M1))
T(B2 ⊗A2)

−1(vec(M2 − vec(M1))

−mn+ log
|B2 ⊗A2|
|B1 ⊗A1|

)
=:

1

2
(x1 + x2 −mn+ x3) .

We now manipulate each part x1, x2, x3 of the equation, by employing the prop-
erties of Kronecker product ⊗ and vectorization operator vec. Namely, for some
P,Q,R,S ∈ Rm×m and some T ∈ Rn×n:

• (P⊗Q)−1 = P−1 ⊗Q−1 ,

• (P⊗Q)(R⊗ S) = (PR)⊗ (QR) ,

• tr(P⊗Q) = tr(P)tr(Q) ,

• vec(P−Q) = vec(P)− vec(Q) ,

• (Q⊗P)vec(R) = vec(PRQ) ,

• vec(P)Tvec(Q) = tr(PTQ) , and

• |P⊗T| = |P|n|T|m .

Thus,

x1 = tr((B2 ⊗A2)
−1(B1 ⊗A1))

= tr((B−12 ⊗A−12)(B1 ⊗A1))

= tr((B−12 B1)⊗ (A−12 A1))

= tr(B−12 B1)tr(A
−1
2 A1) ,

x2 = (vec(M2)− vec(M1))
T(B2 ⊗A2)

−1(vec(M2)− vec(M1))

= vec(M2 −M1)
T(B−12 ⊗A−12)vec(M2 −M1)

= vec(M2 −M1)
Tvec(A−12 (M2 −M1)B

−1
2)

= tr((M2 −M1)
TA−12 (M2 −M1)B

−1
2) ,

x3 = log
|B2 ⊗A2|
|B1 ⊗A1|

= log
|B2|m|A2|n

|B1|m|A1|n

= m log|B2|+ n log|A2| −m log|B1| − n log|A1| .

3 Compound Density Networks 25

The claim follows by substituting x1, x2, x3 back to the KL-divergence formula for
multi-variate Gaussian.

In probabilistic hypernetworks, we specifically assume that all of the covariance
factor matrices are diagonal matrices, following Louizos and Welling [2016]. Thus all
in all, following eq. 3.10, the mixing distribution of the probabilistic hypernetworks
is given by

p(z; g(x;ψ)) :=
L∏
l=1

MN (Wl; gl(hl−1;ψl))

:=
L∏
l=1

MN (Wl; Ml, diag(al), diag(bl)) , (3.12)

where each gl is now specifically maps hl−1 7−→ {Ml, al,bl}. Meanwhile, the regu-
larizer distribution is defined to be

p(z) :=
L∏
l=1

p(Wl) :=
L∏
l=1

MN (Wl; 0, I, I) , (3.13)

Following eq. 3.11, the variational posterior q(ψ;ω) and the prior p(ψ) are de-
fined as

q(ψ;ω) :=
L∏
l=1

Kl∏
k=1

MN (ψlk;ωlk)

:=
L∏
l=1

Kl∏
k=1

MN (ψlk; Nlk, diag(clk), diag(dlk))

p(ψ) :=
L∏
l=1

Kl∏
k=1

MN (ψlk; 0, I, I) , (3.14)

where we have assumed that ωlk = {Nlk, diag(clk), diag(dlk)}.
As results of Proposition 3.4 and 3.5, in probabilistic hypernetworks, the reparametriza-

tion trick for both z and ψ, along with the KL-divergence term in eq. 3.7 are given
by the following corollaries.

Corollary 3.6. Given the mixing distribution (eq. 3.10) and the variational pos-
terior (eq. 3.14) of the probabilistic hypernetworks, Proposition 3.4 implies that
reparametrization trick for each Wl ∈ Rm×n of z for some m,n ∈ N, can be done
by

E ∼MN (E; 0, Im, In)

Wl = Ml + diag(al)
1
2 E diag(bl)

1
2 .

3 Compound Density Networks 26

Similarly, for each parameter matrix ψlk ∈ Rm×n for some m,n ∈ N:

E ∼MN (E; 0, Im, In)

ψlk = Nlk + diag(clk)
1
2 E diag(dlk)

1
2 .

Proof. Trivially implied by Proposition 3.4 and using the fact that diagonal matrices
are symmetric.

Corollary 3.7. Given the mixing distribution (eq. 3.10) and the variational poste-
rior (eq. 3.14) of probabilistic hypernetworks, Proposition 3.5 implies that for each
Wl ∈ Rm×n and for some m,n ∈ N,

DKL[MN (Wl; Ml, diag(al), diag(bl))‖MN (Wl; 0, I, I)] =

1

2

(
m∑
i=1

ali

n∑
j=1

blj + ‖Ml‖2F −mn− n
m∑
i=1

log ali −m
n∑

j=1

log blj

)
.

Furthermore, for each ψlk ∈ Rm×n and for some m,n ∈ N,

DKL[MN (ψlk; Nlk, diag(clk), diag(dlk))‖MN (ψlk; 0, I, I)] =

1

2

(
m∑
i=1

clki

n∑
j=1

dlkj + ‖Nlk‖2F −mn− n
m∑
i=1

log clki −m
n∑

j=1

log dlkj

)
.

Proof. We only prove the first claim, as the proof of the second claim is identical. To
avoid clutter, let p1 :=MN (Wl; Ml, diag(al), diag(bl)) and p2 :=MN (Wl; 0, I, I).
By Proposition 3.5, employing the identity that the determinant of some diagonal
matrix diag(t) is |diag(t)| =

∏
i ti and that ‖X‖F =

√
tr(XTX), we have

DKL[p1‖p2] =
1

2

(
tr(I−1diag(al))tr(I

−1diag(bl))

+ tr((0−Ml)
TI−1(0−Ml)I

−1)−mn+ n log |I|

+m log |I| − n log |diag(al)| −m log |diag(bl)|
)

=
1

2

(m∑
i=1

ali

n∑
j=1

blj + tr((−Ml)
T(−Ml))

−mn+ n log
m∏
i=1

ali −m log
n∏

j=1

blj

)
=

1

2

(
m∑
i=1

ali

n∑
j=1

dlj + ‖Ml‖2F −mn− n
m∑
i=1

log ali −m
n∑

j=1

log blj

)
.

The above corollary tells us how to compute the KL-divergence between each
distribution of Wl to the standard MVN, in closed-form. The following corollary
will show how to compute the KL-divergence, if we consider the overall mixing
distribution, i.e. the product of the distribution of Wl, for all l = 1, . . . , L.

3 Compound Density Networks 27

Corollary 3.8. The KL-divergence between the mixing distribution p(z; gl(hl−1;ψl))
and p(z) (eq. 3.10) is

DKL[p(z; gl(hl−1;ψl))‖ p(z)] =

L∑
l=1

DKL[MN (Wl; Ml, diag(al), diag(bl))‖MN (Wl; 0, I, I)] .

Moreover, the KL-divergence between variational posterior q(ψ;ω) and the prior
p(ψ) defined in eq. 3.14 is given by

DKL[q(ψ;ω)‖ p(ψ)] =

L∑
l=1

Kl∑
k=1

DKL[MN (ψlk; Nlk, diag(clk), diag(dlk))‖MN (ψlk; 0, I, I)] .

Proof. Note that KL-divergence admits chain rule

DKL[p(x, y)‖ q(x, y)] = DKL[p(x)‖ q(x)] +DKL[p(y|x)‖ q(y|x)] ,

for arbitrary random variables x, y and distributions p(x, y), q(x, y). Assuming x
and y are independent, this implies that

DKL[p(x)p(y)‖ q(x)q(y)] = DKL[p(x)‖ q(x)] +DKL[p(y)‖ q(y)] .

In addition, we use the fact that both p(z; gl(hl−1;ψl)) and p(z), and q(ψ;ω) and
p(ψ) are independent layer-wise in eqs. (3.12) and (3.13), and in eq. 3.14, respec-
tively. Therefore, the overall KL-divergence between them is the sum over each
layer’s KL-divergence, which prove the claim.

These corollaries tell us that both the sampling process and the KL-divergence
of the probabilistic hypernetworks can be done layer-wise, leading to efficient com-
putation.

3.2.2 Vector scaling parametrization

The naive formulation of gl can be very expensive in term of number of parameters.
Suppose that for all l = 1, . . . , L, Wl ∈ Rm×n and gl is a two layer MLP with
k hidden units. Then gl would have mk + kmn + km + kn many parameters,
which quickly becomes very large for a moderately sized NNs. The majority of the
parameters are needed to define the mean matrix Ml. Following the approach of Ha
et al. [2017] and Krueger et al. [2017], we make a trade-off between expressiveness
of gl on the mean matrix with the number of parameter by instead replacing Ml

with a matrix Vl of the same size and a vector ul ∈ Rm, which is the output of gl.
Thus, now gl maps hl−1 7−→ {ul, al,bl} and we can get Ml by

Ml =

ul1vl1

ul2vl2

. . .

ulrvlr

 . (3.15)

3 Compound Density Networks 28

That is, each element of ul is being used to scale the corresponding row of Vl. Note
that although Vl is a parameter matrix with the same size of Ml, it crucially is not
an output of gl as in the naive parametrization. Thus the number of parameter of
gl is now mk + mn + 2km + kn, which is more manageable and implementable for
larger weight matrices, as the following proposition shows.

Proposition 3.9. Without loss of generality, suppose that for all l = 1, . . . , L,
Wl ∈ Rm×n and gl is a two layer MLP with k hidden units. Then, the vector scal-
ing parametrization is more efficient than naive parametrization of CDNs mixture
component’s each layer MVN distribution.

Proof. We have shown that naive parametrization requires mk + kmn + km + kn
parameters, while vector scaling parametrization requires mk+mn+ 2km+ kn, for
some k,m, n ∈ N. Notice that we only need to compare kmn+ km with mn+ 2km.
With some trivial algebra, this means we need to compare n with 1+ n

k
, respectively.

It is then clear that, for n > 2 and k > 1, we have n > 1 + n
k
.

3.3 Related work

Models similar to CDNs, i.e. in the form of

p(y|x;θ,φ) =

∫
p(y|x, z;θ)p(z|x;φ) dz , (3.16)

have previously been studied in various settings.
In latent variable models, the approximate posterior predictive distribution of

the variational auto-encoder (VAE) [Kingma and Welling, 2014] has similar form to
eq. 3.16, although it is focusing on unsupervised learning problem, i.e. we assume
D := {xn}Nn=1:

p(x|D) =

∫
p(x|z;θ)p(z|x;φ) dz , (3.17)

where z is the latent variable, p(x|z;θ) is the encoder parametrized by an NN
with parameter θ, and p(z|x;φ) is the decoder parametrized by another NN with
parameter φ. In this sense, CDNs can be seen as a supervised counterpart of VAE.
Although similar to CDNs trained with maximum-likelihood objective, VAE learns
the point estimates of θ and φ, it does so by applying variational Bayes (VB) over z.
That is, p(z|x;φ) is assumed to approximate the posterior p(z|x,D) of z. Therefore,
VAE optimizes an ELBO objective in contrast to the maximum-likelihood objective
of CDNs (eq. 3.4).

Variational information bottleneck (VIB) [Alemi et al., 2017] can be seen as
another counterpart of VAE in supervised setting, i.e. when the dataset is D :=
{xn,yn}Nn=1, as in CDNs. However, it has two crucial differences to CDNs. First,
z in VIB are bottleneck units, i.e. stochastic hidden units in a particular layer of
an NN, in contrast to CDNs where z could be any stochastic component of an NN,

3 Compound Density Networks 29

e.g. inputs, hidden units, or weights. Second, VIB is derived from the information
bottleneck method [Tishby et al., 2001]: Although the objective of VIB is very
similar to the maximum-likelihood CDNs’ objective (eq. 3.4), they crucially differ
in the order of the log and the expectation. Naturally, both of these objectives
get equivalent whenever only a single sample of z is used to do the Monte Carlo
integration in eq. 3.3.

Depeweg et al. [2017, 2018] proposed BNN+LV which equips BNNs with latent
variables, resulting in a model given by

p(y|x) =

∫∫
p(y|x, z;θ)p(z|x)p(θ) dz dθ . (3.18)

Notice that this model is different to Bayesian CDNs (section 3.1.2) as it employs
only a single NN and assumes that the variables z and parameters θ of the NN are
independent. Moreover, Depeweg et al. [2017] specifically assume that the latent
variable z is incorporated as an additional input to the neural network. Finally,
instead of deriving the objective from KL-divergence between the approximate pos-
terior and the exact posterior of z and θ, they use the more general α-divergence.

Malinin and Gales [2018] proposed Prior Networks to also capture what they
call “distributional uncertainty”, i.e. uncertainty due to the mismatch between the
distributions of test and training data. The model can be described similarly as in
eq. 3.16:

p(y|x) =

∫
p(y; z)p(z|x;φ) dz . (3.19)

However, notice that they assume that z ∼ p(z|x;φ) is directly parametrizing a
distribution p(y; z). For example, if z is a Dirichlet random variable, then p(y; z)
can be chosen as Categorical distribution. Thus, in contrast to CDNs, where neural
networks are employed in both mixture components and mixing distribution, Prior
Networks only assume a single neural network. Furthermore, they do not follow the
procedures described in Section 2.2. Rather, they use a multi-task objective that
explicitly use out-of-distribution samples to train the model. This is in contrast to
CDNs and other models we have discussed so far.

Chapter 4

Experiments

As we saw in the previous chapter, CDNs provide a way to quantify predictive
uncertainty of neural networks, by assuming that their weights are random variables.
One can then train CDNs using well-established methods described in Chapter 2,
such as maximum-likelihood and variational Bayesian inference.

Notice that the predictive distribution of CDNs (eq. 3.3) forms compound distri-
bution as seen in standard BNNs, with the difference in the form of the distribution
of the parameters. That is, CDNs assume that the parameters are conditioned to
the input, while BNNs do not. CDNs are also connected to the mixture models in
the way that they are derived. CDNs extend the formulation of finite (conditional)
mixture models, in the form of MDNs, into an uncountably infinite number of mix-
ture components. It is thus fitting to experimentally compare CDNs to recent BNNs
and mixture model approaches in uncertainty quantification tasks.

In this chapter, we will present the empirical results of CDNs, in particular, the
probabilistic hypernetworks, compared to the state-of-the-art models in uncertainty
quantification. This chapter is organized as follows: In Section 4.1 we will discuss
our methodology and the experimental setups. We will then validate the predictive
uncertainty estimate of CDNs on toy datasets, in Section 4.2. Afterward, we will
present our experimental results in standard AI safety tasks: out-of-distribution data
classification in Section 4.3 and adversarial examples in Section 4.4. To conclude this
chapter, we empirically compare CDNs with the variational information bottleneck,
which is a model that is very similar to CDNs (Section 3.3), in Section 4.5.

4.1 Experiment setup

We consider several standard tasks in our experimental analysis: 1D toy regres-
sion problems inspired by Hernández-Lobato and Adams [2015], classification under
out-of-distribution (OOD) data, and detection of and defense against adversarial
examples [Szegedy et al., 2014]. We refer to the CDNs that are trained via LML

(eq. 3.4) and LVB (eq. 3.7) as ML-CDNs and VB-CDNs, respectively. The following
recent models, both Bayesian and non-Bayesian, are considered as the baselines:

• Variational matrix Gaussian (VMG) [Louizos and Welling, 2016] is a

30

4 Experiments 31

BNN where variational Bayesian inference with an MVN distribution is being
used to approximate its posterior.

• Multiplicative normalizing flow (MNF) [Louizos and Welling, 2017] mod-
els the approximate posterior of a BNN as a compound distribution where the
mixing density is given by a normalizing flow [Rezende and Mohamed, 2015].
We use the implementation provided by the authors.1 We anneal the weight-
ing of the KL-term from 0 to 1 over the course of training as we found that it
is necessary to achieve the results reported by Louizos and Welling [2017].

• Noisy K-FAC [Zhang et al., 2018] uses an MVN approximate posterior and
applies approximate natural-gradient-based [Amari, 1998] maximization on
the VI objective. The resulting algorithm can be seen as the noisy version of
the K-FAC method [Martens and Grosse, 2015]. We use the authors’ imple-
mentation2, and use the hyperparameters as suggested by [Zhang et al., 2018],
except for the KL-term weighting, where we set it to be 1 to reflect the correct
lower bound.

• Monte Carlo dropout (MC-dropout or MCD) [Gal and Ghahramani,
2016] uses dropout method [Srivastava et al., 2014] as approximate Bayesian
inference. Furthermore, they show that MC-dropout is equivalent to an ap-
proximation to the deep Gaussian process [Damianou and Lawrence, 2013]. In
our experiments, the dropout probability is set to 0.5 and the weight decay
parameter to 0.0001.

• Deep Ensemble (DE) [Lakshminarayanan et al., 2017] represents the fre-
quentist approaches of uncertainty quantification by using three ingredients:
calibration, mixture model (ensemble), and adversarial training. As suggested
by the authors, we set the number of mixture components to 5, while the ad-
versarial perturbation strength is set to 1% of the input range and the weight
decay is set to 0.0001.

• Dirichlet Prior Networks (DPNs) [Malinin and Gales, 2018] also repre-
sents the non-Bayesian approaches in uncertainty quantification. Specifically,
it proposes to use the so-called Prior Networks to quantify distributional un-
certainty. We use the default hyperparameters as suggested by the authors:
We set the target precision to 10−3 and the smoothing hyperparameter to
10−6. Meanwhile, as DPNs require us to use OOD data during training, we
use Fashion-MNIST [Xiao et al., 2017] as the OOD counterpart of MNIST and
vice-versa, while SVHN [Netzer et al., 2011] is used as the OOD counterpart
of CIFAR-10.

We estimate the predictive distribution p(y|x) of the CDNs, based on 100 joint
samples of ψ ∼ q(ψ;ω), z ∼ p(z; g(x;ψ)) for VB-CDNs and 100 samples of z ∼

1https://github.com/AMLab-Amsterdam/MNF_VBNN
2https://github.com/gd-zhang/Noisy-K-FAC

https://github.com/AMLab-Amsterdam/MNF_VBNN
https://github.com/gd-zhang/Noisy-K-FAC

4 Experiments 32

6 4 2 0 2 4 6
100

50

0

50

100

(a) ML-CDN

6 4 2 0 2 4 6
100

50

0

50

100

(b) VB-CDN

6 4 2 0 2 4 6
100

50

0

50

100

(c) noisy K-FAC

6 4 2 0 2 4 6
100

50

0

50

100

(d) VMG

6 4 2 0 2 4 6
100

50

0

50

100

(e) Deep Ensemble

6 4 2 0 2 4 6
100

50

0

50

100

(f) MC-dropout

Figure 4.1: Comparison of the predictive distributions given by the CDNs and the
baselines on toy datasets with homoscedastic noise and few samples. Black lines
correspond to the true noiseless function, red dots correspond to samples, orange
lines and shaded regions correspond to the empirical mean and the ±3 standard
deviation of the predictive distribution, respectively.

p(z; g(x;ψ)) for ML-CDNs. We also draw 100 samples from the posterior to ap-
proximate the predictive distribution of BNN baselines. If not stated otherwise,
we use a single sample to perform Monte Carlo integration during training.3 We
pick the regularization hyperparameter λ for ML-CDNs (eq. 3.4) out of the set
{10−4, 10−5, 10−6, 10−7, 10−8} which maximizes the validation accuracy. We use
Adam [Kingma and Ba, 2015] with the default hyperparameters for optimization
in all experiments. Where mini-batching is necessary, e.g. on MNIST and CIFAR-
10, we use mini-batches of size 200. All models are optimized over 10000 iterations
in the toy regression experiments, 20000 iterations (≈67 epochs) in experiments on
MNIST and Fashion-MNIST, and 100 epochs in experiments on CIFAR-10. We
chose ReLU and hyperbolic tangent as the nonlinearity of the ML-CDNs’ and VB-
CDNs’ hypernetworks, respectively. The source code for all our experiments is
available at https://github.com/wiseodd/compound-density-networks.

4.2 Toy regression

Following Hernández-Lobato and Adams [2015], we generate our first toy regression
dataset as follows: We sample 20 input points x ∼ U [−4, 4] and their target values
y = x3 + ε, where ε ∼ N (0, 32), i.e. the data noise is homoscedastic. We aim at
analyzing how well the target function is modeled over the larger interval [−6, 6].
Having only a few data points, it is a desirable property of a model to express high

3Kingma and Welling [2014] argued that using a single sample is sufficient as long as the batch
size is sufficiently large, e.g. 100.

https://github.com/wiseodd/compound-density-networks

4 Experiments 33

4 2 0 2 4
100

50

0

50

100

(a) ML-CDN

4 2 0 2 4
100

50

0

50

100

(b) VB-CDN

4 2 0 2 4
100

50

0

50

100

(c) Noisy K-FAC

4 2 0 2 4
100

50

0

50

100

(d) VMG

4 2 0 2 4
100

50

0

50

100

(e) DeepEnsemble

4 2 0 2 4
100

50

0

50

100

(f) MC-dropout

Figure 4.2: Comparison of the predictive distributions given by the CDNs and the
baselines on toy datasets with heteroscedastic noise and many samples.

(epistemic) uncertainty in regions with no or only a few samples, e.g. between −6
and −4 or 4 and 6. The second toy regression dataset is constructed by sampling
100 data points as above, this time with different scale of noise in different intervals:
ε ∼ N (0, 32), if x ≥ 0 and ε ∼ N (0, 152), otherwise. This dataset is designated for
testing whether a model can capture heteroscedastic aleatoric uncertainty.

In these experiments, we use a two-layer MLP with 100 hidden units as the
predictive network, while the hypernetworks of the CDNs (g1 and g2) are modeled
with two-layer MLPs with 10 hidden units each. Three samples of z (along with
a single sample of ψ in the case of the VB-CDN) are used to approximate the
objectives during training of both CDNs and BNNs. Regularization hyperparameter
of λ = 10−3 is used for training the ML-CDNs.

The results for the first data set (shown in Figure 4.1) demonstrate that the VB-
CDN is capable of capturing the epistemic uncertainty like other Bayesian models.
This is not the case for the ML-CDN (which displays high confidence everywhere)
and the DE (which captures only the uncertainty on the left side). This demonstrates
the benefits of using a Bayesian approach for capturing parameter uncertainty. On
the other hand, the mixture models, i.e. the CDNs and the DE, are the only ones able
to capture the aleatoric uncertainty on the second dataset, as shown in Figure 4.2.
This can be explained by the ability of CDNs and DEs to model input-dependent
variance.

To further investigate the different roles in uncertainty modeling of the mixing
distribution and the approximate posterior of VB-CDNs, we compare their average
variance, over the parameters and the input samples.4 On the first data set, the aver-
age variance of the mixing distribution is 0.356 and that of the posterior distribution
is 0.916. On the second data set, the average variance of the posterior distribution

4We picked 1000 evenly spaced points from [−6, 6] and [−4, 4] for the first and the second
dataset, respectively, and approximated the means over the posterior with 100 samples.

4 Experiments 34

6 4 2 0 2 4 6
100

50

0

50

100

(a) 1 samples of z

6 4 2 0 2 4 6
100

50

0

50

100

(b) 2 samples of z

6 4 2 0 2 4 6
100

50

0

50

100

(c) 3 samples of z

4 2 0 2 4
100

50

0

50

100

(d) 1 samples of z

4 2 0 2 4
100

50

0

50

100

(e) 2 samples of z

4 2 0 2 4
100

50

0

50

100

(f) 3 samples of z

Figure 4.3: Effect of number of training samples of z on the results of ML-CDNs on
the toy datasets.

is 0.429 and that of the mixing distribution is 0.618 for x < 0 and 0.031 for x ≥ 0.
Therefore, the variance of the posterior is reduced on the second data set (as desired
for more training data) while the mixing distribution successfully captures the higher
data uncertainty for x < 0, indicating that the approximate posterior successfully
models epistemic and the mixing distribution aleatoric uncertainty.

Finally, to give better understanding of the effect of using different number of
samples of z in ML-CDNs’ and VB-CDNs’ training, we present the results for using
S ∈ {1, 2, 3} samples during training on the toy regression datasets in Figure 4.3 and
Figure 4.4, respectively. We note that using larger values of S leads to an increase
in the ability of CDNs to capture the aleatoric uncertainty of the data.

4.3 Out-of-distribution data

Following Lakshminarayanan et al. [2017], we train all models on the MNIST train-
ing set and investigate their performance on the MNIST test set and the notMNIST
dataset5, which contains images (of the same size and format as MNIST) of letters
from the alphabet instead of handwritten digits. On such an OOD test set, the pre-
dictive distribution of an ideal model should have maximum entropy, i.e. it should
have a value of ln 10 ≈ 2.303 which would be achieved if all ten classes are equally
probable. The predictive NN used for this experiment is an MLP with a 784-100-10
architecture.

We present the results in Figure 4.5, where we plotted the empirical cumulative
distribution function (CDF) of the empirical entropy of the predictive distribution,
following Louizos and Welling [2017]. While one wishes to observe high confidence
in data points similar to those seen during training, the model should express uncer-

5http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html.

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

4 Experiments 35

6 4 2 0 2 4 6
100

50

0

50

100

(a) 1 samples of z

6 4 2 0 2 4 6
100

50

0

50

100

(b) 2 samples of z

6 4 2 0 2 4 6
100

50

0

50

100

(c) 3 samples of z

4 2 0 2 4
100

50

0

50

100

(d) 1 samples of z

4 2 0 2 4
100

50

0

50

100

(e) 2 samples of z

4 2 0 2 4
100

50

0

50

100

(f) 3 samples of z

Figure 4.4: Effect of number of training samples of z on the results of VB-CDNs on
the toy datasets.

tainty when exposed to OOD data. That is, we prefer a model to have a CDF curve
closer to the bottom-right corner on notMNIST, as this implies it makes mostly
uncertain (high entropy) predictions and a curve closer to the upper-left corner for
MNIST, which indicates that it makes mostly confident (low entropy) predictions.
As the results show, the VB-CDN yields high confidence on the test set of MNIST
while having significantly lower confidence on notMNIST compared to all baseline
models, except the DPN. Note, however, that training DPNs requires additional
data (which makes the comparison unfair) and that the DPN’s prediction accuracy
and confidence on the MNIST test set are low compared to all other models. For
the ML-CDN, we observe that it is more confident than all other models on within-
distribution data, at the expense of showing lower uncertainty on OOD data than
the VB-CDN. On the more challenging OOD task introduced by Alemi et al. [2018]
where Fashion-MNIST [Xiao et al., 2017] is used as training set, while the vanilla
and the up-down flipped test set of Fashion-MNIST are used for evaluation (Fig-
ure 4.6), the results are less pronounced, but the CDNs still show a performance
competitive to that of the baseline models.

4.4 Adversarial attack

To investigate the robustness and detection performance of CDNs w.r.t. adver-
sarial examples [Szegedy et al., 2014], we apply the Fast Gradient Sign Method
(FGSM) [Goodfellow et al., 2015] to a 10% fraction (i.e. 1000 samples) of the MNIST,
Fashion-MNIST [Xiao et al., 2017], and CIFAR-10 test set.6 We do so, by making
use of the implementation provided by Cleverhans [Papernot et al., 2018]. We em-
ploy a transfer learning scheme by using DenseNet-121 [Huang et al., 2017] trained

6We generate the adversarial examples based on a single forward-backward pass.

4 Experiments 36

0.0 0.5 1.0 1.5 2.0 2.5
Predictive uncertainty

0.0

0.2

0.4

0.6

0.8

1.0
Em

pi
ric

al
 C

DF

ML-CDN (97)
VB-CDN (97)
MNF (98)
DPN (94)

n. K-FAC (97)
MCD (97)
DE (98)
VMG (97)

(a) MNIST

0.0 0.5 1.0 1.5 2.0 2.5
Predictive uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

ML-CDN
VB-CDN
MNF
DPN

n. K-FAC
MCD
DE
VMG

(b) notMNIST

Figure 4.5: CDFs of the empirical entropy of the predictive distribution of the
models trained on MNIST. Here the y-axis denotes the fraction of predictions having
entropy less than the corresponding value on the x-axis. Confident models should
have its CDF close to the top-left corner of the figure, while uncertain models to
the bottom-right. The number next to each model name indicates its test accuracy.

0.0 0.5 1.0 1.5 2.0 2.5
Predictive uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

ML-CDN (87)
VB-CDN (85)
MNF (87)
DPN (81)

n. K-FAC (89)
MCD (88)
DE (90)
VMG (86)

(a) Fashion-MNIST

0.0 0.5 1.0 1.5 2.0 2.5
Predictive uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

ML-CDN
VB-CDN
MNF
DPN

n. K-FAC
MCD
DE
VMG

(b) Flipped Fashion-MNIST

Figure 4.6: CDFs of the empirical entropy of the predictive distribution of the
models trained on Fashion-MNIST.

on ImageNet, as a fixed feature extractor for CIFAR-10. The predictive network for
both all the datasets is a two-layer MLP with 100 hidden units. The probabilistic
hypernetworks are two-layer MLPs with 50 hidden units. Note, that we do not use
adversarial training when training the Deep Ensemble in this experiment to allow
for a fair comparison.

MNIST Figure 4.7 presents the accuracy and the average empirical entropy of the
predictive distribution w.r.t. adversarial examples for MNIST with varying levels of
perturbation strength (between 0 and 1). We observe that the CDNs are more
robust to adversarial examples than all baseline models. More specifically, the ML-
CDN is significantly more robust in terms of accuracy to adversarial examples than

4 Experiments 37

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

ML-CDN
VB-CDN
MNF
DPN

noisy K-FAC
Deep Ensemble
MC-Dropout
VMG

(a) Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

pr
ed

ict
iv

e
en

tro
py

ML-CDN
VB-CDN
MNF
DPN

noisy K-FAC
Deep Ensemble
MC-Dropout
VMG

(b) Entropy

Figure 4.7: Prediction accuracy and average entropy of models trained on MNIST
when attacked by FGSM-based adversarial examples [Goodfellow et al., 2015] with
varying perturbation strength.

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r %

 o
f m

ax
 e

nt
ro

py 1 3 5 10

(a) ML-CDN

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r %

 o
f m

ax
 e

nt
ro

py 1 3 5 10

(b) VB-CDN

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r %

 o
f m

ax
 e

nt
ro

py 1 3 5 10

(c) BNN (Noisy K-FAC)

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r %

 o
f m

ax
 e

nt
ro

py 1 3 5 10

(d) BNN (VMG)

Figure 4.8: Accuracy and average entropy of CDNs and a BNN (Noisy K-FAC)
under FGSM attack, with a varying number of samples of z used during training.
Circles indicate accuracy, while crosses indicate entropy. The y-axis represents both
the accuracy and the entropy relative to the maximum entropy (i.e. ln 10).

all other models, while showing a competitive and nicely increasing entropy. The
VB-CDN has only slightly better prediction accuracy but attains higher uncertainty
than all the baselines except the DPN. Moreover, it shows uncertainties close to

4 Experiments 38

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r %

 o
f m

ax
 e

nt
ro

py 1 10 20

(a) ML-CDN

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
r %

 o
f m

ax
 e

nt
ro

py 1 10 20

(b) VB-CDN

Figure 4.9: Prediction accuracy and average entropy of CDNs for stronger adver-
sarial examples, constructed by averaging over multiple forward-backward passes.

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ML-CDN
VB-CDN
MNF
DPN

noisy K-FAC
Deep Ensemble
MC-Dropout
VMG

(a) Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

pr
ed

ict
iv

e
en

tro
py

ML-CDN
VB-CDN
MNF
DPN

noisy K-FAC
Deep Ensemble
MC-Dropout
VMG

(b) Entropy

Figure 4.10: Prediction accuracy and average entropy of models trained on Fashion-
MNIST when attacked by FGSM-based adversarial examples with varying pertur-
bation strength.

that of the DPN, while having higher accuracy and without needing additional
data during training. Furthermore, we found that using more samples of z during
training is beneficial for the robustness of both ML-CDNs and VB-CDNs, as shown
in Figure 4.8. This behavior is significantly more pronounced for CDNs than for
BNNs (as exemplary shown for Noisy K-FAC and VMG). When using 10 samples
per iteration during training the accuracy stays over 0.7 and 0.5 for ML-CDNs
and VB-CDNs respectively, even for strong perturbations. As shown in Figure 4.9,
even when the adversarial examples are stronger, i.e. estimated by averaging over
multiple forward-backward passes, the performance of both CDNs is only marginally
decreased (for VB-CDNs, it stays almost unchanged).

Fashion-MNIST The results on Fashion-MNIST are shown in Figure 4.10: Over-
all the same observations and conclusions can be made as for MNIST. We note that
strangely, the DPN’s uncertainty estimate is decreasing with increasing perturbation
strength.

4 Experiments 39

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ML-CDN
VB-CDN
DPN

Deep Ensemble
MC-Dropout
VMG

(a) Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

pr
ed

ict
iv

e
en

tro
py

ML-CDN
VB-CDN
DPN

Deep Ensemble
MC-Dropout
VMG

(b) Entropy

Figure 4.11: Prediction accuracy and average entropy of models trained on CIFAR-
10 when attacked by FGSM-based adversarial examples with varying perturbation
strength.

CIFAR-10 The results shown in Figure 4.11 demonstrate that the VB-CDN is
competitive to other state-of-the-art models on CIFAR-10. The ML-CDN does not
reflect uncertainty very well but has slightly higher accuracy than other models.

4.5 Comparison to training based on VIB objec-

tive

In this section, we experimentally compare the effects of optimizing our proposed
maximum likelihood objective LML and following the VIB approach, which corre-
sponds to optimizing the objective which results from exchanging the log with the
expectation in LML. Observe that they become equivalent when approximating the
objective by a single sample of z. To better analyze the effects of following the
different objectives we, therefore, approximate them based on 10 samples. As a
point of comparison, we also investigated the performance of the VMG [Louizos and
Welling, 2016], which is a closely related BNN using an MVN distribution as the
approximate (input independent) posterior.

Results for the OOD classification and the robustness to adversarial examples
are shown in Figure 4.12. We observe that training ML-CDNs with 10 samples of
z gives the best results in both experiments, the VMG gives the worst. The latter
suggests that the input dependency of the distribution over z of CDNs and VIB
plays a crucial role in the increased observed performance.

While for the robustness against adversarial attacks, the increased sample size
improved the performance of models trained with the VIB as well as with the CDN
objective, the model trained with the CDN objective clearly outperforms the others,
reaching a surprisingly high accuracy about 0.8 even under huge perturbations.

4 Experiments 40

0.0 0.5 1.0 1.5 2.0 2.5
Predictive uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

ML-CDN-10 (97)
VIB-10 (98)
VIB-1/ML-CDN-1 (97)
VMG-1 (97)

(a) MNIST uncertainty

0.0 0.5 1.0 1.5 2.0 2.5
Predictive uncertainty

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
DF

ML-CDN-10
VIB-10
VIB-1/CDN-1
VMG-1

(b) notMNIST uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CDN-10
VIB-10

VIB-1/CDN-1
VMG

(c) MNIST adversarial accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

pr
ed

ict
iv

e
en

tro
py

CDN-10
VIB-10

VIB-1/CDN-1
VMG

(d) MNIST adversarial entropy

Figure 4.12: Comparison of the effects of training the proposed model using the
VIB and the maximum-likelihood objective of CDNs. “Objective-S” denotes that
the objective was approximated based on S samples of z during training.

Chapter 5

Conclusion and Future Research

We have introduced compound density networks (CDNs), a novel class of models
that allows for better uncertainty quantification in neural networks (NNs) and corre-
sponds to a compound distribution (i.e. a mixture with uncountable components) in
which both the component distribution and the input-dependent mixing distribution
are parametrized by NNs. CDNs are inspired by the success of recently proposed
ensemble methods [Osband et al., 2016; Lakshminarayanan et al., 2017] in predic-
tive uncertainty quantification and represent a continuous generalization of mixture
density networks [Bishop, 1994]. They can be implemented by using hypernetworks
to map the input to a distribution over the parameters of the target NN, that mod-
els a predictive distribution. For training CDNs, regularized maximum likelihood
or variational Bayes can be employed.

Extensive experimental analyses showed that CDNs are able to produce promis-
ing results in terms of uncertainty quantification. Specifically, Bayesian CDNs are
able to capture epistemic as well as aleatoric uncertainty, and yield very high uncer-
tainty on out-of-distribution samples while still making high confidence predictions
on within-distribution samples. Furthermore, when facing FGSM-based adversarial
attacks, the predictions of CDNs are significantly more robust in terms of accuracy
than those of previous models. This robustness under adversarial attacks is espe-
cially pronounced for CDNs trained with a maximum-likelihood objective, but also
clearly visible for Bayesian CDNs, which also provide a better chance of detect-
ing the attack by showing increased uncertainty compared to the baselines. These
promising experimental results indicate the benefits of applying a mixture model
approach in conjunction with Bayesian inference for uncertainty quantification in
NNs.

Given the exciting results that CDNs are able to achieve, several interesting
future research is opened:

CDN model derived from residual networks While our focus in this thesis is
on probabilistic hypernetworks, which is a natural CDN model that can be applied in
multi-layer perceptrons (MLPs), one can also derive CDN model in residual networks
(ResNets) [He et al., 2016] by assuming CDNs’ indexing variable zl to be the l-th

41

5 Conclusion and Future Research 42

hidden units, the NN gl to be the l-th residual block, and the interaction between
each zl and hl−1 is via point-wise addition. Given this assumption then, we can
potentially scale-up CDNs into very deep networks.

Application of CDNs in other kinds of networks CDNs could hypotheti-
cally also be implemented in other kinds of networks, such as convolutional (CNNs)
and recurrent networks (RNNs). This opens up a possibly better way of quantify-
ing uncertainty in other tasks, such as sequence prediction, compared to previous
methods.

More efficient parametrization of probabilistic hypernetworks It is always
of our best interest to reduce the number of parameters necessary in our models,
including CDNs. One can potentially gain insights from the previous works in
hypernetworks, such as Pawlowski et al. [2017]; Sheikh et al. [2017, etc] for such
parametrization.

Theoretical understanding of CDNs One could further analyze the theoreti-
cal properties of CDNs, for example in the robustness guarantee under adversarial
attacks. Having a solid theoretical understanding, in conjunction with the strong
empirical results we have shown in this thesis, will make practitioners more confi-
dent in applying CDNs in mission-critical applications.

Finally, it is the author’s hope for the CDNs framework proposed in this thesis
to be useful for machine learning scientists and practitioners alike.

Bibliography

Alemi, A., I. Fischer, J. Dillon, and K. Murphy
2017. Deep variational information bottleneck. In ICLR.

Alemi, A. A., I. Fischer, and J. V. Dillon
2018. Uncertainty in the variational information bottleneck. arXiv preprint
arXiv:1807.00906.

Amari, S.-I.
1998. Natural gradient works efficiently in learning. Neural computation,
10(2):251–276.

Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané
2016. Concrete problems in ai safety. arXiv preprint arXiv:1606.06565.

Ba, J. and B. Frey
2013. Adaptive dropout for training deep neural networks. In Advances in Neural
Information Processing Systems, Pp. 3084–3092.

Bishop, C. M.
1994. Mixture density networks.

Bishop, C. M.
2006. Pattern Recognition and Machine Learning. Springer.

Blei, D. M., A. Y. Ng, and M. I. Jordan
2003. Latent dirichlet allocation. Journal of machine Learning research,
3(Jan):993–1022.

Blundell, C., J. Cornebise, K. Kavukcuoglu, and D. Wierstra
2015. Weight uncertainty in neural networks. Pp. 1613–1622.

Carlini, N. and D. Wagner
2017. Towards evaluating the robustness of neural networks. In 2017 IEEE Sym-
posium on Security and Privacy (SP), Pp. 39–57. IEEE.

Chen, T., E. Fox, and C. Guestrin
2014. Stochastic gradient hamiltonian monte carlo. In International Conference
on Machine Learning, Pp. 1683–1691.

43

BIBLIOGRAPHY 44

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio
2014. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078.

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa
2011. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537.

Damianou, A. and N. Lawrence
2013. Deep gaussian processes. In Artificial Intelligence and Statistics, Pp. 207–
215.

Dasgupta, S.
1999. Learning mixtures of gaussians. In Foundations of computer science, 1999.
40th annual symposium on, Pp. 634–644. IEEE.

Dawid, A. P.
1982. The well-calibrated bayesian. Journal of the American Statistical Associa-
tion, 77(379):605–610.

DeGroot, M. H. and S. E. Fienberg
1983. The comparison and evaluation of forecasters. The statistician, Pp. 12–22.

Depeweg, S., J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft
2017. Learning and policy search in stochastic dynamical systems with bayesian
neural networks. In Proceedings of the Second International Conference on Learn-
ing Representations (ICLR 2017).

Depeweg, S., J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft
2018. Decomposition of uncertainty in bayesian deep learning for efficient and risk-
sensitive learning. In International Conference on Machine Learning, Pp. 1192–
1201.

Der Kiureghian, A. and O. Ditlevsen
2009. Aleatory or epistemic? does it matter? Structural Safety, 31(2):105–112.

Duchi, J.
. Derivations for linear algebra and optimization.

Duchi, J., E. Hazan, and Y. Singer
2011. Adaptive subgradient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research, 12(Jul):2121–2159.

Efron, B.
1992. Bootstrap methods: another look at the jackknife. In Breakthroughs in
statistics, Pp. 569–593. Springer.

BIBLIOGRAPHY 45

Gal, Y.
2016. Uncertainty in deep learning. University of Cambridge.

Gal, Y. and Z. Ghahramani
2016. Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In international conference on machine learning, Pp. 1050–1059.

Gneiting, T. and A. E. Raftery
2007. Strictly proper scoring rules, prediction, and estimation. Journal of the
American Statistical Association, 102(477):359–378.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio
2014. Generative adversarial nets. In Advances in neural information processing
systems, Pp. 2672–2680.

Goodfellow, I., J. Shlens, and C. Szegedy
2015. Explaining and harnessing adversarial examples. In International Confer-
ence on Learning Representations.

Graves, A.
2011. Practical Variational Inference for Neural Networks. In Advances in Neural
Information Processing Systems 24, Pp. 2348–2356.

Guo, C., G. Pleiss, Y. Sun, and K. Q. Weinberger
2017. On calibration of modern neural networks. In Proceedings of the 34th
International Conference on Machine Learning, volume 70, Pp. 1321–1330.

Gupta, A. K. and D. K. Nagar
1999. Matrix variate distributions. Chapman and Hall/CRC.

Ha, D., A. Dai, and Q. V. Le
2017. HyperNetworks. In Proceedings of the Second International Conference on
Learning Representations (ICLR 2017).

He, K., X. Zhang, S. Ren, and J. Sun
2016. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, Pp. 770–778.

Hernández-Lobato, J. M. and R. Adams
2015. Probabilistic backpropagation for scalable learning of bayesian neural net-
works. In International Conference on Machine Learning, Pp. 1861–1869.

Hinton, G., N. Srivastava, and K. Swersky
2012. Rmsprop: Divide the gradient by a running average of its recent magnitude.
Neural networks for machine learning, Coursera lecture 6e.

BIBLIOGRAPHY 46

Hinton, G. E. and D. Van Camp
1993. Keeping the neural networks simple by minimizing the description length
of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, Pp. 5–13. ACM.

Hochreiter, S. and J. Schmidhuber
1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger
2017. Densely connected convolutional networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Pp. 2261–2269. IEEE.

Ioffe, S. and C. Szegedy
2015. Batch normalization: Accelerating deep network training by reducing inter-
nal covariate shift. In Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine Learning Research, Pp. 448–
456, Lille, France. PMLR.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton
1991. Adaptive mixtures of local experts. Neural computation, 3(1):79–87.

Jia, X., B. De Brabandere, T. Tuytelaars, and L. V. Gool
2016. Dynamic filter networks. In Advances in Neural Information Processing
Systems, Pp. 667–675.

Jordan, M. I. and R. A. Jacobs
1994. Hierarchical mixtures of experts and the em algorithm. Neural computation,
6(2):181–214.

Khan, M., D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava
2018. Fast and scalable Bayesian deep learning by weight-perturbation in Adam.
In Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, Pp. 2611–2620, Stock-
holmsmässan, Stockholm Sweden. PMLR.

Kingma, D. P. and J. Ba
2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference for Learning Representations.

Kingma, D. P. and M. Welling
2014. Auto-encoding variational bayes. In Proceedings of the Second International
Conference on Learning Representations (ICLR 2014).

Krizhevsky, A., I. Sutskever, and G. E. Hinton
2012. Imagenet classification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, Pp. 1097–1105.

BIBLIOGRAPHY 47

Krueger, D., C.-W. Huang, R. Islam, R. Turner, A. Lacoste, and A. Courville
2017. Bayesian Hypernetworks. arXiv:1710.04759 [cs, stat]. arXiv: 1710.04759.

Lakshminarayanan, B., A. Pritzel, and C. Blundell
2017. Simple and scalable predictive uncertainty estimation using deep ensembles.
In Advances in Neural Information Processing Systems, Pp. 6402–6413.

LeCun, Y. et al.
1989. Generalization and network design strategies. Connectionism in perspective,
Pp. 143–155.

Lipton, Z. C., J. Berkowitz, and C. Elkan
2015. A critical review of recurrent neural networks for sequence learning. arXiv
preprint arXiv:1506.00019.

Louizos, C. and M. Welling
2016. Structured and efficient variational deep learning with matrix gaussian
posteriors. In International Conference on Machine Learning, Pp. 1708–1716.

Louizos, C. and M. Welling
2017. Multiplicative normalizing flows for variational Bayesian neural networks. In
Proceedings of the 34th International Conference on Machine Learning, Pp. 2218–
2227.

MacKay, D. J.
1992. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472.

Malinin, A. and M. Gales
2018. Predictive uncertainty estimation via prior networks. arXiv preprint
arXiv:1802.10501.

Martens, J. and R. Grosse
2015. Optimizing neural networks with kronecker-factored approximate curvature.
In International conference on machine learning, Pp. 2408–2417.

Metropolis, N. and S. Ulam
1949. The monte carlo method. Journal of the American statistical association,
44(247):335–341.

Murphy, K. P.
2012. Machine Learning: A Probabilistic Perspective. The MIT Press.

Nair, V. and G. E. Hinton
2010. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th international conference on machine learning (ICML-10), Pp. 807–
814.

BIBLIOGRAPHY 48

Neal, R. M.
1993. Bayesian learning via stochastic dynamics. In Advances in neural informa-
tion processing systems, Pp. 475–482.

Neal, R. M.
1995. BAYESIAN LEARNING FOR NEURAL NETWORKS. PhD thesis, Uni-
versity of Toronto.

Neal, R. M. et al.
2011. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2(11):2.

Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng
2011. Reading digits in natural images with unsupervised feature learning. In
NIPS workshop on deep learning and unsupervised feature learning, volume 2011,
P. 5.

Osband, I., C. Blundell, A. Pritzel, and B. Van Roy
2016. Deep exploration via bootstrapped dqn. In Advances in neural information
processing systems, Pp. 4026–4034.

Papernot, N., F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin, C. Xie,
Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan, K. Hambardzumyan,
Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg, J. Uesato, W. Gierke,
Y. Dong, D. Berthelot, P. Hendricks, J. Rauber, and R. Long
2018. Technical report on the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768.

Patterson, S. and Y. W. Teh
2013. Stochastic gradient riemannian langevin dynamics on the probability sim-
plex. In Advances in Neural Information Processing Systems, Pp. 3102–3110.

Pawlowski, N., A. Brock, M. C. H. Lee, M. Rajchl, and B. Glocker
2017. Implicit Weight Uncertainty in Neural Networks. arXiv:1711.01297 [cs,
stat]. arXiv: 1711.01297.

Peterson, C.
1987. A mean field theory learning algorithm for neural networks. Complex
systems, 1:995–1019.

Platt, J. et al.
1999. Probabilistic outputs for support vector machines and comparisons to reg-
ularized likelihood methods. Advances in large margin classifiers, 10(3):61–74.

Rezende, D. and S. Mohamed
2015. Variational inference with normalizing flows. In Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, Pp. 1530–1538, Lille, France. PMLR.

BIBLIOGRAPHY 49

Ritter, H., A. Botev, and D. Barber
2018. A scalable laplace approximation for neural networks. In International
Conference on Learning Representations.

Robbins, H. and S. Monro
1951. A stochastic approximation method. The Annals of Mathematical Statistics,
22(3):400–407.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams
1986. Learning representations by back-propagating errors. nature, 323(6088):533.

Schmidhuber, J.
1992. Learning to control fast-weight memories: An alternative to dynamic re-
current networks. Neural Computation, 4(1):131–139.

Shafahi, A., W. R. Huang, C. Studer, S. Feizi, and T. Goldstein
2019. Are adversarial examples inevitable? In International Conference on Learn-
ing Representations.

Sheikh, A.-S., K. Rasul, A. Merentitis, and U. Bergmann
2017. Stochastic maximum likelihood optimization via hypernetworks. In Ad-
vances in Neural Information Processing Systems.

Simonyan, K. and A. Zisserman
2014. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
2014. Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1):1929–1958.

Sun, S., C. Chen, and L. Carin
2017. Learning structured weight uncertainty in bayesian neural networks. In
Artificial Intelligence and Statistics, Pp. 1283–1292.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus
2014. Intriguing properties of neural networks.

Tishby, N., F. C. Pereira, and W. Bialek
2001. The information bottleneck method. Proceedings of the 37th Allerton Con-
ference on Communication, Control and Computation, 49.

Welling, M. and Y. W. Teh
2011. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings
of the 28th International Conference on Machine Learning (ICML-11), Pp. 681–
688.

BIBLIOGRAPHY 50

Xiao, H., K. Rasul, and R. Vollgraf
2017. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms.

Zhang, G., S. Sun, D. Duvenaud, and R. Grosse
2018. Noisy natural gradient as variational inference. In Proceedings of the 35th
International Conference on Machine Learning, Pp. 5852–5861.

Appendices

51

Appendix A

Other CDN models

In Chapter 3 of the main text of this thesis, we have constructed the probabilistic
hypernetworks: a CDN model where the indexing variable z of the mixture density
is assumed to be the weight matrices of the neural network f that parametrizes the
mixture component distribution. However, we have observed that z could be any
components of f : its weights, its inputs, or its hidden units.

In this supplementary chapter, as thought experiments, we will construct two
additional CDN models where z is assumed to be the components of the hidden
layers of f . In the first model, we assume z to be a learned multiplicative noise, akin
to Gaussian dropout [Srivastava et al., 2014]. We will show that indeed, this model
is the adaptive dropout model that is proposed by Ba and Frey [2013]. Thus, we can
see that CDNs are the generalization of the adaptive dropout. The second model is
constructed to make CDNs more scalable by employing residual networks (ResNets)
architecture [He et al., 2016]. More specifically, we reinterpret the probabilistic
hypernetwork gl as the l-th residual block, and we assume z to be the hidden units
of a ResNet. This corresponds to the probabilistic hypernetworks models where
instead of using multiplication to do forward pass on f , we use addition.

A.1 Adaptive Gaussian dropout

Dropout [Srivastava et al., 2014] is a technique where random noise is used to corrupt
the hidden activations of a neural network f and acts as stochastic regularization
during training. Ba and Frey [2013] further proposed adaptive dropout to make
the Bernoulli dropout noise context-dependent, i.e. a function of the input. In this
section, we will reinterpret adaptive dropout as an instance of CDN. Specifically, we
treat the adaptive dropout noise to be the CDNs’ mixing variable z and plug it into
the CDNs formula in eq. 3.2.

We construct the adaptive dropout as follows. Let zl ∼ p(zl; gl(hl−1;φl)) be the
noise vector of layer l, with zl ∈ Rkl where kl is the dimension of the l-th hidden
layer of f . We would like to multiplicatively apply this noise to the activation vector
hl, i.e. hl � zl, where � denotes the Hadamard product. Let z := {zl}Ll=1 and let

52

A Other CDN models 53

g(x;φ) := {gl(hl−1;φl)}Ll=1. We define the mixing distribution to be

p(z; g(x;φ)) :=
L∏
l=1

p(zl; gl(hl−1;φl)) . (A.1)

Note that each of the p(zl; g(hl−1;φl)) can be any distribution as long as we can
apply the reparametrization trick, for example

p(zl; gl(hl−1;φl)) := N (zl; 1, diag(gl(hl−1;φl))) , (A.2)

which corresponds to the adaptive variant of Gaussian dropout [Srivastava et al.,
2014], or the Gaussian counterpart of the method proposed by Ba and Frey [2013].

The above construction is sufficient to concretely define a CDN model. To train
it, however, we need to specify the regularization distribution p(z) for maximum-
likelihood (ML) training (eq. 3.4) or the variational posterior and prior over the
parameters for variational Bayes training (eq. 3.7). We will only show the procedure
for ML training. Specifically, for adaptive Gaussian dropout with standard normal
regularization distribution, the reparametrization trick is given by the following
proposition.

Proposition A.1. For all l = 1, . . . , L, let σ2
l := gl(hl−1;φl) be a variance vector.

For every layer l, it is sufficient for eq. A.2 that we sample zl ∈ Rk, for some k ∈ N,
by

e ∼ N (e; 0, Ik)

zl = 1 + σl � e .

Proof. We use the fact that Gaussian is closed under affine transformation. For
example, suppose x ∼ N (x;µ,Σ) then Ax + b =: y ∼ N (y; Aµ + b,AΣAT).
Thus, it follows from the claim that

zl = 1 + diag(σl) e ∼ N (zl; 1, diag(σl)Ikdiag(σl)) = N (zl; 1, diag(σ2
l)) .

This implies that zl is distributed according to eq. A.2.

Meanwhile, the KL-divergence regularization term is summarized as follows.

Proposition A.2. For all l = 1, . . . , L, let zl ∈ Rk for some k ∈ N and σ2
l :=

gl(hl−1;φl). Given eq. A.2 and p(z) :=
∏L

l=1 p(zl) :=
∏L

l=1N (0, Ik), the KL-
divergence between them is given by

DKL[p(zl|gl(hl−1;ψl))‖p(zl)] =
1

2

k∑
i=1

σ2
li − log σ2

li .

Proof. Following Kingma and Welling [2014, Appendix B], the KL-divergence of
N (µ,σ2I) with N (0, I) is given by

DKL[N (µ,σ2I)‖N (0, I)] =
1

2

k∑
i=1

µ2
i + σ2

i − log σ2
i − 1 .

A Other CDN models 54

By assumption, µ = 1, thus

DKL[N (1,σ2I)‖N (0, I)] =
1

2

k∑
i=1

σ2
i − log σ2

i ,

and the claim follows.

Finally, as we have seen, based on Corollary 3.8, the overall KL-divergence term
is just the sum of the L individual KL-divergence terms.

A.2 Probabilistic ResNets

h+p(r1; g1(x;ψ1))x p(r2; g2(h;ψ2)) + φ(x)

Figure A.1: An example of probabilistic ResNets with two residual blocks g1, g2.

Recall that in probabilistic hypernetworks introduced in the main text of this
paper, to compute the l-th hidden units hl, we compute

Wl ∼ p(Wl; gl(hl−1;ψl)); hl = WT
l hl−1 . (A.3)

That is, hl is attained by multiplying the l-th mixing variables Wl ∈ z with the
input of the l-th layer, hl−1.

Let us now write Wl as rl and assume it to have the same dimensionality as
hl−1. Furthermore, we replace the multiplication in eq. A.3 with addition, yielding

rl ∼ p(rl; gl(hl−1;ψl)); hl = rl + hl−1 . (A.4)

Observe that gl can be seen as an arbitrary NN, which we might choose as in the
residual block of ResNets [He et al., 2016]. However, instead of outputting some
deterministic variables, we define gl to output the mean and variance parameters
of a fully-factorized Gaussian, from which rl can be sampled. Thus, we define
p(rl; gl(hl−1;ψl)) := N (rl;µl, diag(σ2

l)). We call gl the l-th probabilistic residual
block. As in ResNets, we can thus use a collection of probabilistic residual blocks
to build an NN. We call the resulting NNs probabilistic ResNets. We illustrate the
probabilistic ResNets in Figure A.1.

Notice that the random variables z that are modeled by the CDN’s mixture
component are now have the same dimension as the hidden units. Furthermore, we
only introduce an additional layer to output also the variance of rl. Therefore, the
probabilistic ResNets only introduce small overhead over the vanilla ResNets thus
share the scalability property of the vanilla ResNets. This is crucial, as this allows
CDNs to be applied in large-scale models with large-scale datasets.

Appendix B

Supplementary Experimental
Results

B.1 Experimental results for additional baseline

models

In this section, we compare the CDNs described in the main text with the Kronecker-
factored Laplace approximation (KFLA) proposed by Ritter et al. [2018], the mix-
ture of experts (MoE) and the MDN models on the MNIST dataset. For both MDN
and MoE, we use two-layer MLP with 100 hidden units, with 5 mixture compo-
nents. Specifically for MoE, the mixing distribution is also given by another NN
of the same architecture. The results for the out-of-distribution prediction and ad-
versarial examples are presented in Figure B.1 and Figure B.2, respectively. Note
that the results are in line with the conclusions drawn in comparison with respect
to other baseline models in the main text.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

ML-CDN
VB-CDN

KFLA
MDN

MoE

(a) MNIST

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

ML-CDN
VB-CDN

KFLA
MDN

MoE

(b) notMNIST

Figure B.1: CDF of the prediction entropy on MNIST and notMNIST test set of
the additional models.

55

B Supplementary Experimental Results 56

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ML-CDN
VB-CDN

KFLA MDN

(a) Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

pr
ed

ict
iv

e
en

tro
py

ML-CDN
VB-CDN

KFLA MDN

(b) Entropy

Figure B.2: Prediction accuracy and average entropy of models trained on MNIST
when attacked by FGSM-based adversarial examples [Goodfellow et al., 2015] with
varying perturbation strength.

B.2 Visualization of the learned mixing distribu-

tion

To further understand the effect of conditioning the distribution over z (i.e. the
mixing distribution) we compute the mixing distribution p(z; g(xi;ψ)) for a set
of samples x1, . . .xn and ML-CDN trained on the heteroscedastic cubic regression
dataset. The results for two randomly selected weights wli ∈ Wl are shown in
Figure B.3. We found that the mean and the variance of the marginal distribution
(which is Gaussian due to our model) varies depending on the value of the input
x indicating that different mixture components get high probabilities for different
inputs.

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

3 2 1 0 1 2 3
0

1

2

3

4

5

6

(b)

Figure B.3: Visualization of the distribution p(wli; g(x;ψ)) of a randomly selected
weight wli ∈Wl for different samples of input x from the heteroscedastic toy dataset.
wli denotes the i-th weight of the l-th layer of f .

Furthermore, to show that CDNs are able to capture multimodality in weight
space, we train a probabilistic hypernetworks model with a 5 hidden units mixture
component on a toy classification dataset that is constructed as follows: we sample
an input x from a mixture of Gaussian p(x) = 1

2
N (−3, 1) + 1

2
N (3, 1), and assign

B Supplementary Experimental Results 57

a label depending whether it comes from the first (y = 0) or the second Gaussian
(y = 1). To evaluate the resulting distribution, we marginalize the mixing distri-
bution p(z|g(x;ψ)) w.r.t. x, i.e. we evaluate p(z) =

∫
p(z|g(x;ψ))p(x) dx. The

resulting distribution for two randomly selected weights wli ∈Wl are shown in Fig-
ure B.4 below. We observe that indeed our model can learn a multimodal weight
distribution.

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

3 2 1 0 1 2 3
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

(b)

Figure B.4: Visualization of the marginal distribution p(wli) =∫
p(wli; g(x;ψ))p(x) dx for two randomly selected weights wli of a CDN trained on

a toy classification dataset.

	Abstract
	Acknowledgement
	Table of contents
	List of Figures
	List of Symbols
	Introduction
	Background
	Neural networks as probabilistic models
	Multi-layer perceptrons
	Convolutional neural networks
	Recurrent neural networks

	Method of uncertainty quantification
	Bayesian statistics
	Frequentist statistics

	Mixture models
	Conditional mixture models
	Mixture of experts
	Mixture density networks

	Compound Density Networks
	Compound density networks
	Maximum-likelihood CDNs
	Bayesian CDNs

	Probabilistic hypernetworks
	Probabilistic hypernetworks with matrix-variate normal distributions
	Vector scaling parametrization

	Related work

	Experiments
	Experiment setup
	Toy regression
	Out-of-distribution data
	Adversarial attack
	Comparison to training based on VIB objective

	Conclusion and Future Research
	Bibliography
	Appendices
	Other CDN models
	Adaptive Gaussian dropout
	Probabilistic ResNets

	Supplementary Experimental Results
	Experimental results for additional baseline models
	Visualization of the learned mixing distribution

